Skip to main content
Log in

High-content siRNA screen of the kinome identifies kinases involved in Git2-induced mesenchymal-epithelial transition

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Epithelial-mesenchymal transition (EMT) and its reverse process mesenchymal-epithelial transition (MET) programs are involced in the metastatic process. More and more evidence confirms that EMT is vital for the initiation and dissemination of cancer cells whereas MET is critical for successful metastatic colonization of a secondary organ. The regulating mechanism of EMT mediated cancer progression and metastasis has been deeply investigated. However, what processes are dependent on MET in metastatic cascades remains unclear. Here, we created a cell based high-content siRNA screen using the breast cancer cell line 4TO7 to search for kinases that were involved in Git2-induced MET. Our results revealed that 58 kinases including transferase, phosphorylation regulators, ATP/nucleotide partners potentially participate in Git2-induced MET. Our preliminary data is expected to facilitate elucidation of the mechanism on how MET is initiated during cancer metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Loges S., Mazzone M., Hohensinner P., Carmeliet P. 2009. Silencing or fueling metastasis with VEGF inhibitors: Antiangiogenesis revisited. Cancer Cell. 15, 167–170.

    Article  CAS  PubMed  Google Scholar 

  2. Ocaña O.H., Córcoles R., Fabra A., Moreno-Bueno G., Acloque H., Vega S., Barrallo-Gimeno A., Cano A., Nieto M.A. 2012. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell. 22, 709–724.

    Article  PubMed  Google Scholar 

  3. Chaffer C.L., Weinberg R.A. 2011. A perspective on cancer cell metastasis. Science. 331, 1559–1564.

    Article  CAS  PubMed  Google Scholar 

  4. Thiery J.P., Acloque H., Huang R.Y., Nieto M.A. 2009. Epithelial–mesenchymal transitions in development and disease. Cell. 139, 871–890.

    Article  CAS  PubMed  Google Scholar 

  5. Brabletz T. 2012. To differentiate or not—routes towards metastasis. Nat. Rev. Cancer. 12, 425–436.

    Article  CAS  PubMed  Google Scholar 

  6. Tsai J.H., Donaher J.L., Murphy D.A., Chau S., Yang J. 2012. Spatiotemporal regulation of epithelial–mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell. 22, 725–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chaffer C.L., Brennan J.P., Slavin J.L., Blick T., Thompson E.W., Williams E.D. 2006. Mesenchymalto- epithelial transition facilitates bladder cancer metastasis: Role of fibroblast growth factor receptor-2. Cancer Res. 66, 11271–11278.

    Article  CAS  PubMed  Google Scholar 

  8. Korpal M., Ell B.J., Buffa F.M., Ibrahim T., Blanco M.A., Celià-Terrassa T., Mercatali L., Khan Z., Goodarzi H., Hua Y., Wei Y., Hu G., Garcia BA., Ragoussis J., Amadori D., Harris A.L., Kang Y. 2011. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat. Med. 17, 1101–1108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kahn R.A., Bruford E., Inoue H., Logsdon J.M Jr., Nie Z., Premont R.T., Randazzo P.A., Satake M., Theibert A.B., Zapp M.L., Cassel D. 2008. Consensus nomenclature for the human ArfGAP domain-containing proteins. J. Cell Biol. 182, 1039–1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Turner C.E., Brown M.C., Perrotta J.A., Riedy M.C., Nikolopoulos S.N., McDonald A.R., Bagrodia S., Thomas S., Leventhal P.S. 1999. Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: A role in cytoskeletal remodeling. J. Cell Biol. 145, 851–863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Haendeler J., Yin G., Hojo Y., Saito Y., Melaragno M., Yan C., Sharma V.K., Heller M., Aebersold R., Berk B.C. 2003. GIT1 mediates Src-dependent activation of phospholipase C gamma by angiotensin II and epidermal growth factor. J. Biol. Chem. 278, 49936–49944.

    Article  CAS  PubMed  Google Scholar 

  12. Bagrodia S., Bailey D., Lenard Z., Hart M., Guan J.L., Premont R.T., Taylor S.J., Cerione R.A. 1999. A tyrosine- phosphorylated protein that binds to an important regulatory region on the cool family of p21-activated kinase-binding proteins. J. Biol. Chem. 274, 22393–22400.

    Article  CAS  PubMed  Google Scholar 

  13. Hoefen R.J., Berk B.C. 2006. The multifunctional GIT family of proteins. J. Cell Sci. 119, 1469–1475.

    Article  CAS  PubMed  Google Scholar 

  14. Phee H., Dzhagalov I., Mollenauer M., Wang Y., Irvine D.J., Robey E., Weiss A. 2010. Regulation of thymocyte positive selection and motility by GIT2. Nat. Immunol. 11, 503–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schmalzigaug R., Rodriguiz R.M., Phillips L.E., Davidson C.E., Wetsel W.C., Premont R.T. 2009. Anxiety-like behaviors in mice lacking GIT2. Neurosci. Lett. 451, 156–161.

    Article  CAS  PubMed  Google Scholar 

  16. Wang X., Liao S., Nelson E.R., Schmalzigaug R., Spurney R.F., Guilak F., Premont R.T., Gesty-Palmer D. 2012. The cytoskeletal regulatory scaffold protein GIT2 modulates mesenchymal stem cell differentiation and osteoblastogenesis. Biochem. Biophys. Res. Commun. 425, 407–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen W.Y., Liu W.J., Zhao Y.P., Zhou L., Zhang T.P., Chen G., Shu H. 2012. Induction, modulation and potential targets of miR-210 in pancreatic cancer cells. Hepatobiliary Pancreat. Dis. Int. 11, 319–324.

    Article  CAS  PubMed  Google Scholar 

  18. Zhou W., Thiery J.P. 2013. Loss of Git2 induces epithelial–mesenchymal transition by miR146a-Cnot6Lcontrolled expression of Zeb1. J. Cell Sci. 126, 2740–2746.

    Article  CAS  PubMed  Google Scholar 

  19. Huang da W., Sherman B.T., Lempicki R.A. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57.

    Article  PubMed  Google Scholar 

  20. Dennis G., Jr., Sherman B.T., Hosack D.A., Yang J., Gao W., Lane H.C., Lempicki R.A. 2003. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4, P3.

    Article  PubMed  Google Scholar 

  21. Aslakson C.J., Miller F.R. 1992. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 52, 1399–1405.

    CAS  PubMed  Google Scholar 

  22. Zhang J.H., Chung D.Y., Oldenburg K.R. 1999. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67–73.

    Article  CAS  PubMed  Google Scholar 

  23. Sakari V., Massagué J. 2013. Origins of metastatic traits. Cancer Cell. 24, 410–421.

    Article  Google Scholar 

  24. Thiery J.P. 2002. Epithelial–mesenchymal transitions in tumour progression. Nat. Rev. Cancer. 2, 442–454.

    Article  CAS  PubMed  Google Scholar 

  25. Gonzalez D.M., Medici D. 2014. Signaling mechanisms of the epithelial–mesenchymal transition. Sci. Signal. 7 (344): re8. doi 10.1126/scisignal.2005189

    Article  PubMed  PubMed Central  Google Scholar 

  26. Boulter E., Grall D., Cagnol S., Van Obberghen-Schilling E. 2006. Regulation of cell-matrix adhesion dynamics and Rac-1 by integrin linked kinase. FASEB J. 20, 1489–1491.

    Article  CAS  PubMed  Google Scholar 

  27. Brown M.C., Cary L.A., Jamieson J.S., Cooper J.A., Turner C.E. 2005. Src and FAK kinases cooperate to phosphorylate paxillin kinase linker, stimulate its focal adhesion localization, and regulate cell spreading and protrusiveness. Mol. Biol. Cell. 16, 4316–4328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ewing R.M., Chu P., Elisma F., Li H., Taylor P., Climie S., McBroom-Cerajewski L., Robinson M.D., O’Connor L., Li M., Taylor R., Dharsee M., Ho Y., Heilbut A., Moore L., et al. 2007. Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol. Syst. Biol. 3, 89.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zhou.

Additional information

Published in Russian in Molekulyarnaya Biologiya, 2017, Vol. 51, No. 4, pp. 696–703.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, M.G., Xu, J., Yang, Q.F. et al. High-content siRNA screen of the kinome identifies kinases involved in Git2-induced mesenchymal-epithelial transition. Mol Biol 51, 614–620 (2017). https://doi.org/10.1134/S0026893317040070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893317040070

Keywords

Navigation