Molecular Biology

, Volume 51, Issue 4, pp 621–626 | Cite as

Method for the molecular cytogenetic visualization of fragile site FRAXA

  • T. S. Bobokova
  • N. A. Lemskaya
  • I. S. Kolesnikova
  • D. V. YudkinEmail author
Molecular Cell Biology


Fragile X syndrome is one of the most common reasons for human hereditary mental retardation. It is associated with the expansion of CGG repeats in the 5'-untranslated region of the FMR1 gene, which results in the suppression of its expression and the development of the disease. At present, methods based on PCR and Southern blot analysis are used for diagnostics of the fragile X syndrome. The presence of a fragile site FRAXA on the X chromosome is typical for patients with this pathology. We developed a method of visualizing this site in cell cultures obtained from patients using the fluorescent in situ hybridization (FISH) and the combination of two probes. The method allows one to detect five types of signals on the X chromosome, three of which are normal, while two are associated with the emergence of fragile site FRAXA. An analysis of the distribution of all signal types in cell lines from healthy individuals and patients with fragile X syndrome demonstrated that the method allows one to determine differences between lines with a high statistical significance and that it is applicable to detecting cells that are carriers of the syndrome.


fragile X syndrome mental retardation chromosome fragility FRAXA FMR1 fluorescent in situ hybridization 



fragile X syndrome




fluorescent in situ hybridization


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Martin J.P., Bell J. 1943. A pedigree of mental defect showing sex-linkage. J. Neurol. Psychiatry. 6, 154–157.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Saldarriaga W., Tassone F., González-Teshima L.Y., Forero-Forero J.V., Ayala-Zapata S., Hagerman R. 2014. fragile X syndrome. Colombia Médica. 45, 190–198.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Hunter J., Rivero-Arias O., Angelov A., Kim E., Fotheringham I., Leal J. 2014. Epidemiology of fragile X syndrome: A systematic review and meta-analysis. Am. J. Med. Genet. Part A. 164, 1648–1658.CrossRefGoogle Scholar
  4. 4.
    D’Hulst C., Kooy R.F. 2009. Fragile X syndrome: From molecular genetics to therapy. J. Med. Genet. 46, 577–584.CrossRefPubMedGoogle Scholar
  5. 5.
    Monaghan K.G., Lyon E., Spector E. 2013. ACMG standards and guidelines for fragile X testing: A revision to the disease-specific supplements to the standards and guidelines for clinical genetics laboratories of the American college of medical genetics and genomics. Genet. Med. 15, 575–586.CrossRefPubMedGoogle Scholar
  6. 6.
    Gallagher A., Hallahan D. 2012. Fragile X-associated disorders: A clinical overview. J. Neurol. 259, 401–413.CrossRefPubMedGoogle Scholar
  7. 7.
    Lokanga R.A., Entezam A., Kumari D., Yudkin D., Qin M., Smith C.B., Usdin K. 2013. Somatic expansion in mouse and human carriers of fragile X premutation alleles. Hum. Mutat. 34, 157–166.CrossRefPubMedGoogle Scholar
  8. 8.
    Biancalana V., Steinbach P., Stenhouse S. 2006. Draft best practice guidelines for molecular analysis in fragile X syndrome. Eur. Mol. Genet. Quality Network. Scholar
  9. 9.
    Houdayer C., Lemonnier A., Gerard M., Chauve C., Tredano M., Billette de Villemeur T., Aymard P., Bonnefont J.P., Feldmann D. 1999. Improved fluorescent PCR-based assay for sizing CGG repeats at the FRAXA locus. Clin. Chem. Lab. Med. 37, 397–402.CrossRefPubMedGoogle Scholar
  10. 10.
    Saluto A., Brussino A., Tassone F., Arduino C., Cagnoli C., Pappi P., Hagerman P., Migone N., Brusco A. 2005. An enhanced polymerase chain reaction assay to detect pre- and full mutation alleles of the fragile X mental retardation 1 gene. J. Mol. Diagn. 7, 605–612.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Khaniani M.S., Kalitsis P., Burgess T., Slater H.R. 2008. An improved diagnostic PCR assay for identification of cryptic heterozygosity for CGG triplet repeat alleles in the fragile X gene (FMR1). Mol. Cytogenet. 1, 5.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Filipovic-Sadic S., Sah S., Chen L., Krosting J., Sekinger E., Zhang W., Hagerman P.J., Stenzel T.T., Hadd A., Latham G.J., Tassone F. 2010. A novel FMR1 PCR method for the routine detection of low-abundance expanded alleles and full mutations in fragile X syndrome. Clin. Chem. 56, 399–408.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Seneca S., Lissens W., Endels K., Caljon B., Bonduelle M., Keymolen K., de Rademaeker M., Ullmann U., Haentjens P., Van Berkel K., Van Dooren S. 2012. Reliable and sensitive detection of fragile X (expanded) alleles in clinical prenatal DNA samples with a fast turnaround time. J. Mol. Diagn. 14, 560–568.CrossRefPubMedGoogle Scholar
  14. 14.
    Tassone F., Pan R., Amiri K., Taylor A.K., Hagerman P.J. 2008. A rapid polymerase chain reaction-based screening method for identification of all expanded alleles of the fragile X (FMR1) gene in newborn and high-risk populations. J. Mol. Diagn. 10, 43–49.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tassone F. 2015. Advanced technologies for the molecular diagnosis of fragile X syndrome. Exp. Rev. Mol. Diagn. 15, 1465–1473.CrossRefGoogle Scholar
  16. 16.
    Naumann A., Hochstein N., Weber S., Fanning E., Doerfler W. 2009. A distinct DNA methylation boundary in the 5' upstream sequence of the Fmr1 promoter binds nuclear proteins and is lost in fragile X syndrome. Am. J. Hum. Genet. 85, 606–616.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhou Y., Law H.Y., Boehm C.D., Yoon C.S., Cutting G.R., Ng I.S.L., Chong S.S. 2004. Robust fragile X (CGG)n genotype classification using a methylation specific triple PCR assay. J. Med. Genet. 41, e45.CrossRefGoogle Scholar
  18. 18.
    Coffee B., Keith K., Albizua I., Malone T., Mowrey J., Sherman S.L., Warren S.T. 2009. Incidence of fragile X syndrome by newborn screening for methylated FMR1 DNA. Am. J. Hum. Genet. 85, 503–514.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Strelnikov V.V., Nemtsova M.V., Chesnokova G.G., Kuleshov N.P., Zaletaev D.V. 1999. Diagnosis of the Martin–Bell syndrome based on structural and functional alterations in the 5'-untranslated region of the FMR1 gene. Mol. Biol. (Moscow). 33 (2) 288–294.Google Scholar
  20. 20.
    Lukusa T., Fryns J.P. 2008. Human chromosome fragility. Biochim. Biophys. Acta. 1779, 3–16.CrossRefPubMedGoogle Scholar
  21. 21.
    Yudkin D., Hayward B.E., Aladjem M.I., Kumari D., Usdin K. 2014. Chromosome fragility and the abnormal replication of the FMR1 locus in fragile X syndrome. Human Mol. Genetics. 23, 2940–2952.CrossRefGoogle Scholar
  22. 22.
    Sutherland G.R., Baker E., Fratini A. 1985. Excess thymidine induced folate sensitive fragile sites. Am. J. Med. Genet. 22, 433–443.CrossRefPubMedGoogle Scholar
  23. 23.
    Grasso M., Boon E.M.J., Filipovic-Sadic S., Van Bunderen P.A., Gennaro E., Cao R., Latham G.J., Hadd A.G., Coviello D.A. 2014. A novel methylation PCR that offers standardized determination of FMR1 methylation and CGG repeat length without southern blot analysis. J. Mol. Diagn. 16, 23–31.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Smith K.T., Nicholls R.D., Reines D. 2006. The gene encoding the fragile X RNA-binding protein is controlled by nuclear respiratory factor 2 and the CREB family of transcription factors. Nucleic Acids Res. 34, 1205–1215.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sutherland G.R. 2003. Rare fragile sites. Cytogenet. Genome Res. 100, 77–84.CrossRefPubMedGoogle Scholar
  26. 26.
    Kumari D., Somma V., Nakamura A.J., Bonner W.M., D’Ambrosio E., Usdin K. 2009. The role of DNA damage response pathways in chromosome fragility in fragile X syndrome. Nucleic Acids Res. 37, 4385–4392.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • T. S. Bobokova
    • 1
  • N. A. Lemskaya
    • 1
  • I. S. Kolesnikova
    • 1
  • D. V. Yudkin
    • 1
    • 2
    Email author
  1. 1.Institute of Molecular and Cellular Biology, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations