Skip to main content
Log in

Circulating microRNAs in the identification of biological fluids: A new approach to standardization of expression-based diagnostics

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Molecular profiling of normal tissues is a regular and necessary step when developing systems for expression analyses in biological samples, including diagnostic panels for various diseases and conditions. Yet there are still no rigorous criteria to allow precise typing of normal tissues. A main problem is that the methods employed in diagnostic expression testing are difficult to standardize. While various technologies, instruments, and reagents are available, universal protocols of handling biological material are lacking, thus impairing the reproducibility of data from independent studies. The review describes a new approach to standardizing circulating microRNA studies in forensic biology, which has relatively recently (7–8 years ago) come to employ RNA markers in molecular typing of tissues and biological fluids. Forensic biology is now one of the few disciplines where several panels of tissue mRNA markers have been developed within a short period of time and a number of specific microRNA markers have been established and validated for several biological fluids. To allow their successful use, new protocols have been combined with the available, rigidly standardized system of genetic personal identification. Although a ready diagnostic product has still not been obtained with this well-working approach, the apparent efficiency of the standardization methods clearly demonstrates that the problem is possible to solve in other biomedical fields, including those where RNA-based diagnostic protocols are still under development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

STR:

short tandem repeat

References

  1. Keller A., Leidinger P., Gislefoss R., Haugen A., Langseth H., Staehler P., Lenhof H.P., Meese E. 2011. Stable serum miRNA profiles as potential tool for noninvasive lung cancer diagnosis. RNA Biol. 8, 506–516. doi 10.4161/rna.8.3.14994

    Article  CAS  PubMed  Google Scholar 

  2. Oury C., Servais L., Bouznad N., Hego A., Nchimi A., Lancellotti P. 2016. MicroRNAs in valvular heart diseases: potential role as markers and actors of valvular and cardiac remodeling. J. Mol. Sci. 17, 1–17. doi 10.3390/ijms17071120

    Article  Google Scholar 

  3. Sethupathy P. 2016. The promise and challenge of therapeutic microRNA silencing in diabetes and metabolic diseases. Curr. Diab. Rep. 6, 1–6. doi 10.1007/s11892-016-0745-3

    Google Scholar 

  4. Dumache R., Rogobete A.F., Bedreag O.H., Sarandan M., Cradigati A.C., Papurica M., Dumbuleu C.M., Nartita R., Sandesc D. 2015. Use of miRNAs as biomarkers in sepsis. Anal. Cell Pathol. (Amst.). 2015 (186716), 1–9. doi 10.1155/2015/186716

    Google Scholar 

  5. Sun M., Zhou X., Chen L., Huang S., Leung V., Wu N., Pan H., Zhen W., Lu W., Peng S. 2016. The regulatory roles of microRNAs in bone remodeling and perspectives as biomarkers in osteoporosis. Biomed. Res. Int. 2016 (1652417), 1–11. doi 10.1155/2016/1652417

    Google Scholar 

  6. Sanders R., Mason D.J., Foy C.A., Huggett J.F. 2014. Considerations for accurate gene expression measurement by reverse transcription quantitative PCR when analysing clinical samples. Anal. Bioanal. Chem. 406, 6471–6483. doi 10.1007/s00216-014-7857-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hwang P.I., Wu H.B., Wang C.D., Lin B.L., Chen C.T., Yuan S., Wu G., Li K.C. 2011. Tissue-specific gene expression templates for accurate molecular characterization of the normal physiological states of multiple human tissues with implication in development and cancer studies. BMC Genomics. 12, 1–13. doi 10.1186/1471-2164-12-439

    Article  Google Scholar 

  8. Bammler T., Beyer R.P., Bhattacharya S., Boorman G.A., Boyles A., Bradford B.U., Bumgarner R.E., Bushel P.R., Chaturvedi K., Choi D., Cunningham M.L., Deng S., Dressman H.K., Fannin R.D., Farin F.M., et al. 2005. Standardizing global gene expression analysis between laboratories and across platforms. Nat. Methods. 2, 351–356.

    Article  PubMed  Google Scholar 

  9. Aran D., Sirota M., Butte A.J. 2015. Systematic pancancer analysis of tumour purity. Nat. Commun. 6, 1–11. doi 10.1038/ncomms9971

    Article  Google Scholar 

  10. Storey J.D., Madeoy J., Strout J.L., Wurfel M., Ronald J., Akey J.M. 2007. Gene-expression variation within and among human populations. Am. J. Hum. Genet. 80, 502–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Farina N.H., Wood M.E., Perrapato S.D., Francklyn C.S., Stein G.S., Stein J.L., Lian J.B. 2014. Standardizing analysis of circulating microRNA: Clinical and biological relevance. J. Cell Biochem. 115, 805–811. doi 10.1002/jcb.24745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moldovan L., Batte K.E., Trgovcich J., Wisler J., Marsh C.B., Piper M.J. 2014. Methodological challenges in utilizing miRNAs as circulating biomarkers. J. Cell. Mol. Med. 18, 371–390. doi 10.1111/jcmm.12236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lindenbergh A., Maaskant P., Sijen T. 2013. Implementation of RNA profiling in forensic casework. Forensic Sci. Int. Genet. 7, 159–166. doi 10.1016/j.fsigen.2012.09.003

    Article  CAS  PubMed  Google Scholar 

  14. Hanson E.K., Lubenow H., Ballantyne J. 2009. Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal. Biochem. 387, 303–314.

    Article  CAS  PubMed  Google Scholar 

  15. van den Berge M., Carracedo A., Gomes I., Graham E.A., Haas C., Hjort B., Hoff-Olsen P., Maronas O., Mevag B., Morling N., Niederstatter H., Parson W., Schneider P.M., Court D.S., Vidaki A., Sijen T. 2014. A collaborative European exercise on mRNA-based body fluid/skin typing and interpretation of DNA and RNA results. Forensic Sci. Int. Genet. 10, 40–48. doi 10.1016/j.fsigen. 2014.01.006

    Article  PubMed  Google Scholar 

  16. Silva S.S., Lopes C., Teixeira A.L., Carneiro de Sousa M.J., Medeiros R. 2015. Forensic miRNA: Potential biomarker for body fluids? Forensic Sci. Int. Genet. 14, 1–10. doi 10.1016/j.fsigen.2014.09.002

    CAS  Google Scholar 

  17. Dumache R., Ciocan V., Muresan C., Rogobete A.F., Enache A. 2015. Circulating microRNAs as promising biomarkers in forensic body fluids identification. Clin. Lab. 6, 1129–1135.

    Google Scholar 

  18. Zubakov D., Boersma A.W., Choi Y., Van Kuijk P.F., Wiemer E.A., Kayser M. 2010. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int. J. Legal Med. 124, 217–226.

    Article  PubMed  PubMed Central  Google Scholar 

  19. van der Meer D.J., Williams G.A. 2015. Performing body fluid identification with microRNAs using capillary electrophoresis. Forensic Sci. Int. Genet. Suppl. Ser. 5, e592–e594. http://dx.doi.org/10.1016/j.fsigss.2015.09.234.

    Article  Google Scholar 

  20. He L., Hannon G.J. 2004. MicroRNAs: Small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522–531. doi 10.1038/nrg1379

    Article  CAS  PubMed  Google Scholar 

  21. Kiseleva Ya.Yu., Radko S.P., Bodoev N.V. 2015. Circulating microRNA as diagnostic markers of oncological diseases. Vestn. Ross. Akad. Estestv. Nauk. 5, 79–85.

    Google Scholar 

  22. Vlassov V.V., Rykova E. Yu., Ponomariova A.A., Zaporozhchenko I.A., Morozkin E.S., Cherdyntseva N.V., Laktionov P.P. 2015. Circulating microRNAs in lung cancer: Prospects for diagnosis, prognosis, and prediction of antitumor treatment efficacy. Mol. Biol. (Moscow). 49 (1), 48–57.

    Article  CAS  Google Scholar 

  23. Kayser M., de Knijff P. 2011. Improving human forensics through advances in genetics, genomics and molecular biology. Nat. Rev. Genet. 12, 179–192. doi 10.1038/nrg2952

    Article  CAS  PubMed  Google Scholar 

  24. Silvia A. 2015. Extracellular microRNAs in forensic sciences: Potential biomarkers for body fluid identification. Ph. D. Thesis, Abel Salazar Biomedical Sciences Institute, University of Porto, Portugal. https://repositorio-aberto.up.pt/bitstream/10216/81679/2/127803.pdf.

    Google Scholar 

  25. Bentwich I., Avniel A., Karov Y., Aharonov R., Gilad S., Barad O., Barzilai A., Einat P., Einav U., Meiri E., Sharon E., Spector Y., Bentwich Z. 2005. Identification of hundreds of conserved and nonconserved human microRNAs. Nat. Genet. 37, 766–770. doi 10.1038/ng1590

    Article  CAS  PubMed  Google Scholar 

  26. Williams G., Uchimoto M.L., Coult N., World D., Beasley E. 2013. Body fluid mixtures: Resolution using forensic microRNA analysis. Forensic Sci. Int.: Genet. Suppl. Ser. 4, 292–293. doi 10.1016/j.fsigss.2013.10.149

    Google Scholar 

  27. Wang Z., Zhang J., Wei W., Zhou D., Luo H., Chen X., Hou Y. 2015. Identification of saliva using microRNA biomarkers for forensic purpose. J. Forensic Sci. 60, 702–706. doi 10.1111/1556-4029.12730

    Article  CAS  PubMed  Google Scholar 

  28. Courts C., Madea B. 2011. Specific micro-RNA signatures for the detection of saliva and blood in forensic body-fluid identification. J. Forensic Sci. 56, 1464–1470. doi 10.1111/j.1556-4029.2011.01894.x

    Article  CAS  PubMed  Google Scholar 

  29. Sauer E., Reinke A.K., Courts C. 2016. Differentiation of five body fluids from forensic samples by expression analysis of four microRNAs using quantitative PCR. Forensic Sci. Int. Genet. 22, 89–99. doi 10.1016/j.fsigen. 2016.01.018

    Article  CAS  PubMed  Google Scholar 

  30. Wang Z., Luo H., Pan X., Liao M., Hou Y. 2012. A model for data analysis of microRNA expression in forensic body fluid identification. Forensic Sci. Int. Genet. 6, 419–423. doi 10.1016/j.fsigen.2011.08.008

    Article  CAS  PubMed  Google Scholar 

  31. Wang Z., Zhang J., Luo H., Ye Y., Yan J., Hou Y. 2013. Screening and confirmation of microRNA markers for forensic body fluid identification. Forensic Sci. Int. Genet. 1, 116–123. doi 10.1016/j.fsigen.2012.07.006

    Article  Google Scholar 

  32. de Waele J. 2011. Evaluation of factors affecting the identification of body fluids using mRNA in forensic case samples. Univ. Amsterdam Res. Project (36 EC). UvA Scripties Online. http://dare.uva.nl/cgi/arno/show.cgi?fid=333666.

    Google Scholar 

  33. Lindenbergh A., de Pagter M., Ramdayal G., Visser M., Zubakov D., Kayser M., Sijen T. A. 2012. Multiplex (m)RNA-profiling system for the forensic identification of body fluids and contact traces. Forensic Sci. Int. Genet. 6, 565–577. doi 10.1016/j.fsigen.2012.01.009

    Article  CAS  PubMed  Google Scholar 

  34. van den Berge M., Bhoelai B., Harteveld J., Matai A., Sijen T. 2016. Advancing forensic RNA typing: On non-target secretions, a nasal mucosa marker, a differential co-extraction protocol and the sensitivity of DNA and RNA profiling. Forensic Sci. Int. Genet. 20, 119–129. doi 10.1016/j.fsigen.2015.10.011

    Article  PubMed  Google Scholar 

  35. Vennemann M., Koppelkamm A. 2010. mRNA profiling in forensic genetics I: Possibilities and limitations. Forensic Sci. Int. 203, 71–75. doi 10.1016/j.forsciint.2010.07.006

    Article  CAS  PubMed  Google Scholar 

  36. Uchimoto M.L., Beasley E., Coult N., Omelia E.J., World D., Williams G. 2013. Considering the effect of stem-loop reverse transcription and real-time PCR analysis of blood and saliva specific microRNA markers upon mixed body fluid stains. Forensic Sci. Int. Genet. 7, 418–421. doi 10.1016/j.fsigen.2013.04.006

    Article  CAS  PubMed  Google Scholar 

  37. Bowden A., Fleming R., Harbison S. 2011. A method for DNA and RNA co-extraction for use on forensic samples using the Promega DNA IQ™ system. Forensic Sci. Int. Genet. 5, 64–68. doi 10.1016/j.fsigen.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  38. van der Meer D., Uchimoto M.L., Williams G. 2013. Simultaneous analysis of micro-RNA and DNA for determining the body fluid origin of DNA profiles. J. Forensic Sci. 58, 967–971. doi 10.1111/1556-4029.12160

    Article  PubMed  Google Scholar 

  39. Sijen T. 2014. Molecular approaches for forensic cell type identification: On mRNA, miRNA, DNA methylation and microbial markers. Forensic Sci. Int. Genet. 18, 21–32. doi 10.1016/j.fsigen.2014.11.015

    Article  PubMed  Google Scholar 

  40. Wegman D.W., Ghasemi F., Khorshidi A., Yang B.B., Liu S.K., Yousef G.M., Krylov S.N. 2015. Highly-sensitive amplification-free analysis of multiple miRNAs by capillary electrophoresis. Anal. Chem. 87, 1404–1410. doi 10.1021/ac504406s

    Article  CAS  PubMed  Google Scholar 

  41. Li Y., Zhang J., Wei W., Wang Z., Prinz M., Hou Y. 2014. A strategy for co-analysis of microRNAs and DNA. Forensic Sci. Int. Genet. 12, 24–29. doi 10.1016/j.fsigen.2014.04.011

    Article  CAS  PubMed  Google Scholar 

  42. Williams G., Uchimoto M.L., Coult N., World D., Beasley E., Avenell P. 2013. Characterisation of body fluid specific microRNA markers by capillary electrophoresis. Forensic Sci. Int. Gen. Suppl. Ser. 4, 274–275. http://dx.doi.org/10.1016/j.fsigss.2013.10.140.

    Article  Google Scholar 

  43. Park J.L., Park S.M., Kwon O.H., Lee H.C., Kim J.Y., Seok H.H., Lee W.S., Lee S.H., Kim Y.S., Woo K.M., Kim S.Y. 2014. Microarray screening and qRT-PCR evaluation of microRNA markers for forensic body fluid identification. Electrophoresis. 35, 3062–3068. doi 10.1002/elps.201400075

    Article  CAS  PubMed  Google Scholar 

  44. Etheridge A., Lee I., Hood L., Galas D., Wang K. 2011. Extracellular microRNA: A new source of biomarkers. Mutat. Res. 717, 85–90. doi 10.1016/j.mrfmmm.2011.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dunnett H., van der Meer D., Williams G.A. 2014. Evaluation of stem-loop reverse transcription and poly-A tail extension in microRNA analysis of body f luids. Microrna. 3, 150–154. doi 10.2174/2211536604666150121000603

    Article  CAS  PubMed  Google Scholar 

  46. Luo X.Y., Li Z.L., Peng D., Wang L., Zhang L., Liang W.B. 2015. MicroRNA markers for forensic body fluid identification obtained from miRCURY™ LNA array. Forensic Sci. Int. Genet. Suppl. Ser. 5, e630–e632. http://dx.doi.org/10.1016/j.fsigss.2015.10.006.

    Article  Google Scholar 

  47. Valencia-Sanchez M.A., Liu J., Hannon G.J., Parker R. 2006. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 20, 515–524. doi 10.1101/gad.1399806

    Article  CAS  PubMed  Google Scholar 

  48. Weber J.A., Baxter D.H., Zhang S., Huang D.Y., Huang K.H., Lee M.J., Galas D.J., Wang K. 2010. The microRNA spectrum in 12 body fluids. Clin. Chem. 56, 1733–1741. doi 10.1373/clinchem.2010.147405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Konishi H., Ichikawa D., Komatsu S., Shiozaki A., Tsujiura M., Takeshita H., Morimura R., Nagata H., Arita T., Kawaguchi T., Hirashima S., Fujiwara H., Okamoto K., Otsuji E. 2012. Detection of gastric cancer- associated microRNAs on microRNA microarray comparing pre- and post-operative plasma. Br. J. Cancer. 106, 740–747. doi 10.1038/bjc.2011.588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Grasedieck S., Schö ler N., Bommer M., Niess J.H., Tumani H., Rouhi A., Bloehdorn J., Liebisch P., Mertens D., Döhner H., Buske C., Langer C., Kuchenbauer F. 2012. Impact of serum storage conditions on microRNA stability. Leukemia. 26, 2414–2416. doi 10.1038/leu.2012.106

    Article  CAS  PubMed  Google Scholar 

  51. Patnaik S.K., Mallick R., Yendamuri S. 2010. Detection of microRNAs in dried serum blots. Anal. Biochem. 407, 147–149. doi 10.1016/j.ab.2010.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kayser M. 2015. Forensic DNA phenotyping: Predicting human appearance from crime scene material for investigative purposes. Forensic Sci. Int. Genet. 18, 33–48. doi 10.1016/j.fsigen.2015.02.003

    Article  CAS  PubMed  Google Scholar 

  53. Simon L.M., Edelstein L.C., Nagalla S., Woodley A.B., Chen E.S., Kong X., Ma L., Fortina P., Kunapuli S., Holinstat M., McKenzie S.E., Dong J.F, Shaw C.A., Bray P.F. 2014. Human platelet microRNA-mRNA networks associated with age and gender revealed by integrated plateletomics. Blood. 123, e37–e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Bavykin.

Additional information

Original Russian Text © A.S. Bavykin, 2017, published in Molekulyarnaya Biologiya, 2017, Vol. 51, No. 4, pp. 573–581.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bavykin, A.S. Circulating microRNAs in the identification of biological fluids: A new approach to standardization of expression-based diagnostics. Mol Biol 51, 506–513 (2017). https://doi.org/10.1134/S0026893317040045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893317040045

Keywords

Navigation