Skip to main content
Log in

Identification of proteins associated with transcription factors HOXA9 and E2A-PBX1 by tandem affinity purification

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Chimeric transcription factor E2A-PBX1 induces the development of acute lymphoblastic B-cell leukemia in children. Using a transgenic mouse model, we previously demonstrated that homeobox (HOX) gene HOXA9 genetically interact with E2A-PBX1 gene in the development of B-cell leukemia in mice. HOXA9 itself is a potent oncogene resulting in myeloid leukemia when overexpressed, which is strongly accelerated by its collaborator Meis1. HOX, PBX1 and MEIS1 proteins have been shown to form hetero dimeric or trimeric complexes in different combinations. Cooperative interaction between PBX1 and HOX proteins enhances their DNA binding specificity, essential for HOX dependent developmental programs. PBX1 is retained in E2A-PBX1, and thus the strong transcriptional activator properties of E2A-PBX1 may lead to aberrant activation of normally repressed targets of HOX-PBX complexes. However, although there is evidence that E2A-PBX1 could bind to HOX and MEIS1 proteins it is still unclear whether such complexes are actually required for leukemic transformation or whether E2A-PBX1 and HOXA9 are each part of larger protein complexes acting in independent complementing oncogenic pathways. In this study we aim to search for other HOXA9 and E2A-PBX1 interacting proteins. To identify novel proteins interacting with human E2A-PBX1 or HOXA9 we used tandem affinity purification (TAP) of protein complexes from 697 pre-B leukemic and HeLa cell lines transduced to express E2A-PBX1 or HOXA9, respectively, with covalently attached FLAG/HA peptides. The protein composition of each complex was determined using tandem mass-spectrometry. In the E2A-PBX1 containing complex we identified lymphoid transcription factor IKAROS, chromatin remodeling factors of SWI/SNF family while multiple subunits of translation initiation factor eIF3, E3 ubiquitin ligase UBR5 emerged from the HOXA9 complex as potential critical protein partners. This is the first time the protein partners of either E2A-PBX1 or HOXA9 oncoproteins were identified using an unbiased biochemical approach. The identification of translation initiation factors associated with HOXA9 might indicate a novel function for HOX proteins independent of their transcriptional activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AD:

activation domain

ALL:

acute lymphoid leukemia

AML:

acute myeloid leukemia

ESI MS/MS:

electrospray ionization tandem mass spectrometry

HOX:

homeobox

HCD:

HOX Cooperative Domain

MS:

mass spectrometry

TALE:

the Three Amino acid Loop Extension

TAP:

tandem affinity purification

References

  1. Korsmeyer S.J. 1992. Chromosomal translocations in lymphoid malignancies reveal novel proto-oncogenes. Annu. Rev. Immunol. 10, 785–807.

    Article  CAS  PubMed  Google Scholar 

  2. Kamps M.P., Murre C., Sun X.H., Baltimore D. 1990. A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell. 60, 547–555.

    Article  CAS  PubMed  Google Scholar 

  3. Sykes D.B., Kamps M.P. 2004. E2a/Pbx1 induces the rapid proliferation of stem cell factor-dependent murine pro-T cells that cause acute T-lymphoid or myeloid leukemias in mice. Mol. Cell. Biol. 24, 1256–1269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aspland S.E., Bendall H.H., Murre C. 2001. The role of E2A-PBX1 in leukemogenesis. Oncogene. 20, 5708–5717.

    Article  CAS  PubMed  Google Scholar 

  5. Bijl J., Sauvageau M., Thompson A., Sauvageau G. 2005. High incidence of proviral integrations in the HOXa locus in a new model of E2a-PBX1-induced B-cell leukemia. Genes Dev. 19, 224–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hassawi M., Shestakova E.A., Fournier M., Lebert-Ghali C.-E., Vaisson G., Frison H., Sinnett D., Vidal R., Thompson A., Bijl J.J. 2014. HOXa9 collaborates with E2A-PBX1 in mouse B cell leukemia in association with Flt3 activation and decrease of B cell gene expression. Dev. Dyn. 243, 145–158.

    Article  CAS  PubMed  Google Scholar 

  7. Shestakova E.A., Hassawi M., Fournier M., Lebert-Ghali C.E., Frison H., Bijl J. 2010. Abstr. 17th Annual Research Conference of HMR Research Center of the University of Montreal, Montreal, Canada, p. 28.

    Google Scholar 

  8. Shestakova E.A., Hassawi M., Fournier M., Lebert-Ghali C.-E., Frison H., Bijl J. 2011. Abstr. 18th Annual Research Conference of HMR Research Center of the University of Montreal, Montreal, Canada, p. 55.

    Google Scholar 

  9. Shestakova E.A., Hassawi M., Fournier M., Lebert-Ghali C.E., Frison H., Bijl J. 2012. Abstr. 5th Annual Canadian Cancer Immune Therapy Symposium, Montreal, Canada, p. 6.

    Google Scholar 

  10. Fournier M., Hassawi M., Frison H., Lebert-Ghali C.E., Shestakova E., Bijl J. 2010. Paralog 4 genes HOXA4 and HOXB4 induce a strong expansion of B-cell progenitors in vitro in the context of E2A-PBX. 15th Congress of the European Hematology Association. 2010, Barcelona, Spain. Haematologica. 95 (Suppl. 2), 228. Abstr. 0554.

    Google Scholar 

  11. Fournier M., Savoie-Rondeau I., Larochelle F., Hassawi M., Shestakova E.A., Roy D.C., Bijl J.J. 2014. Inability of HOXB4 to enhance self-renewal of malignant B cells: Favorable profile for the expansion of autologous hematopoietic stem cells. Exp. Hematol. 42, 526–535.

    Article  CAS  PubMed  Google Scholar 

  12. Thorsteinsdottir U., Krosl J., Kroon E., Haman A., Hoang T., Sauvageau G. 1999. The oncoprotein E2APbx1a collaborates with HOXa9 to acutely transform primary bone marrow cells. Mol. Cell. Biol. 19, 6355–6366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bijl J., Krosl J., Lebert-Ghali C.E., Vacher J., Mayotte N., Sauvageau G. 2008. Evidence for HOX and E2A-PBX1 collaboration in mouse T-cell leukemia. Oncogene. 27, 6356–6364.

    Article  CAS  PubMed  Google Scholar 

  14. LeBrun D.P., Cleary M.L. 1994. Fusion with E2A alters the transcriptional properties of the homeodomain protein PBX1 in t(1;19) leukemias. Oncogene. 9, 1641–1647.

    CAS  PubMed  Google Scholar 

  15. Lu Q., Wright D.D., Kamps M.P. 1994. Fusion with E2A converts the Pbx1 homeodomain protein into a constitutive transcriptional activator in human leukemias carrying the t(1;19) translocation. Mol. Cell. Biol. 14, 3938–3948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Massari M.E., Grant P.A., Pray-Grant M.G., Berger S.L., Workman J.L., Murre C. 1999. A conserved motif present in a class of helix-loop-helix proteins activates transcription by direct recruitment of the SAGA complex. Mol. Cell. 4, 63–73.

    Article  CAS  PubMed  Google Scholar 

  17. Bayly R., Chuen L., Currie R.A., Hyndman B.D., Casselman R., Blobel G.A., LeBrun D.P. 2004. E2A-PBX1 interacts directly with the KIX domain of CBP/p300 in the induction of proliferation in primary hematopoietic cells. J. Biol. Chem. 279, 55362–55371.

    Article  CAS  PubMed  Google Scholar 

  18. Bayly R., Murase T., Hyndman B.D., Savage R., Nurmohamed S., Munro K., Casselman R., Smith S.P., LeBrun D.P. 2006. Critical role for a single leucine residue in leukemia induction by E2A-PBX1. Mol. Cell. Biol. 26, 6442–6452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Quong M.W., Romanow W.J., Murre C. 2002. E protein function in lymphocyte development. Annu. Rev. Immunol. 20, 301–322.

    Article  CAS  PubMed  Google Scholar 

  20. Lu Q., Kamps M.P. 1997. Heterodimerization of HOX proteins with Pbx1 and oncoprotein E2a-Pbx1 generates unique DNA-binding specificities at nucleotides predicted to contact the N-terminal arm of the HOX homeodomain: Demonstration of HOX-dependent targeting of E2a-Pbx1 in vivo. Oncogene. 14, 75–83.

    Article  CAS  PubMed  Google Scholar 

  21. Lu Q., Knoepfler P.S., Scheele J., Wright D.D., Kamps M.P. 1995. Both Pbx1 and E2Aa-Pbx1 bind the DNA motif ATCAATCAA cooperatively with the products of multiple murine HOX genes, some of which are themselves oncogenes. Mol. Cell. Biol. 15, 3786–3795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bach C., Buhl S., Mueller D., Garcia-Cuellar M.P., Maethner E., Slany R.K. 2010. Leukemogenic transformation by HOXA cluster genes. Blood. 115, 2910–2918.

    Article  CAS  PubMed  Google Scholar 

  23. Kroon E., Krosl J., Thorsteinsdottir U., Baban S., Buchberg A.M., Sauvageau G. 1998. HOXa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J. 17, 3714–3725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thorsteinsdottir U., Sauvageau G., Hough M.R., Dragowska W., Lansdorp P.M., Lawrence H.J., Largman C., Humphries R.K. 1997. Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia. Mol. Cell Biol. 17, 495–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thorsteinsdottir U., Kroon E., Jerome L., Blasi F., Sauvageau G. 2001. Defining roles for HOX and MEIS1 genes in induction of acute myeloid leukemia. Mol. Cell Biol. 21, 224–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sauvageau G., Thorsteinsdottir U., Hough M.R., Hugo P., Lawrence H.J., Largman C., Humphries R.K. 1997. Overexpression of HOXB3 in hematopoietic cells causes defective lymphoid development and progressive myeloproliferation. Immunity 6, 13–22.

    Article  CAS  PubMed  Google Scholar 

  27. Perkins A.C., Cory S. 1993. Conditional immortalization of mouse myelomonocytic, megakaryocytic and mast cell progenitors by the HOX-2.4 homeobox gene. EMBO J. 12, 3835–3846.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fischbach N.A., Rozenfeld S., Shen W., Fong S., Chrobak D., Ginzinger D., Kogan S.C., Radhakrishnan A., Le Beau M.M., Largman C., Lawrence H.J. 2005. HOXB6 overexpression in murine bone marrow immortalizes a myelomonocytic precursor in vitro and causes hematopoietic stem cell expansion and acute myeloid leukemia in vivo. Blood. 105, 1456–1466.

    Article  CAS  PubMed  Google Scholar 

  29. Lawrence H.J., Rozenfeld S., Cruz C., Matsukuma K., Kwong A., Komuves L., Buchberg A.M., Largman C. 1999. Frequent co-expression of the HOXA9 and MEIS1 homeobox genes in human myeloid leukemias. Leukemia 13, 1993–1999.

    Article  CAS  PubMed  Google Scholar 

  30. Huang Y., Sitwala K., Bronstein J., Sanders D., Dandekar M., Collins C., Robertson G., MacDonald J., Cezard T., Bilenky M., Thiessen N., Zhao Y., Zeng T., Hirst M., Hero A., Jones S., Hess J.L. 2012. Identification and characterization of HOXa9 binding sites in hematopoietic cells. Blood. 119, 388–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shen W.F., Rozenfeld S., Kwong A., Komuves L.G., Lawrence H.J., Largman C. 1999. HOXA9 forms triple complexes with PBX2 and MEIS1 in myeloid cells. Mol. Cell. Biol. 19, 3051–3061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jacobs Y., Schnabel C.A., Cleary M.L. 1999. Trimeric association of HOX and TALE homeodomain proteins mediates HOXb2 hindbrain enhancer activity. Mol. Cell. Biol. 19, 5134–5142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nakatani Y., Ogryzko V. 2003. Immuno affinity purification of mammalian protein complexes. Methods Enzymol. 370, 430–444.

    Article  CAS  PubMed  Google Scholar 

  34. Tagami H., Ray-Gallet D., Almouzni G., Nakatani Y. 2004. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell. 116, 51–61.

    Article  CAS  PubMed  Google Scholar 

  35. Nakatani Y., Tagami H., Shestakova E. 2006. How is epigenetic information on chromatin inherited after DNA replication? In: The Histone Code and Beyond. New Approaches to Cancer Therapy, Ernst Schering Research Foundation Workshop 57, vol. 57. Eds. Berger S.L., Nakanishi O., Haendler B. Springer, pp. 89–96.

    Google Scholar 

  36. Shestakova E.A., Nakatani Y. 2015. Characterization of histone predeposition complexes from different cellular compartments. J. Investig. Genomics 2, 00017. doi 10.15406/jig.2015.02.00017

    Google Scholar 

  37. Shestakova E.A. 2015. Different mechanisms of epigenetic regulation of gene expression. MOJ Cell Sci. Rep. 2, 00019. doi 10.15406/mojcsr.2015.02.00019

    Article  Google Scholar 

  38. Shevchenko A., Tomas H., Havlis J., Olsen J.V., Mann M. 2006. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protoc. 1, 2856–2860.

    Article  CAS  Google Scholar 

  39. Havlis J., Thomas H., Sebela M., Shevchenko A. 2003. Fast-response proteomics by accelerated in-gel digestion of proteins. Anal. Chem. 75, 1300–1306.

    Article  CAS  PubMed  Google Scholar 

  40. Keller A., Nesvizhskii A.I., Kolker E., Aebersold R. 2002. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392.

    Article  CAS  PubMed  Google Scholar 

  41. Nesvizhskii A.I., Keller A., Kolker E., Aebersold R. 2003. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658.

    Article  CAS  PubMed  Google Scholar 

  42. Aebersold R., Mann M. 2003. Mass spectrometrybased proteomics. Nature. 422, 198–207.

    Article  CAS  PubMed  Google Scholar 

  43. Topisirovic I., Kentsis A., Perez J.M., Guzman M.L., Jordan C.T., Borden K.L.B. 2005. Eukaryotic translation initiation factor 4E activity is modulated by HOXA9 at multiple levels. Mol. Cell. Biol. 25, 1100–1112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Silvera D., Formenti S.C., Schneider R.J. 2010. Translational control in cancer. Nat. Rev. Cancer. 10, 254–266.

    Article  CAS  PubMed  Google Scholar 

  45. Hershey J.W. 2015. The role of eIF3 and its individual subunits in cancer. Biochim. Biophys. Acta. 1849, 792–800.

    Article  CAS  PubMed  Google Scholar 

  46. Bondos S.E., Tan X.X., Matthews K.S. 2006. Physical and genetic interactions link Hox function with diverse transcription factors and cell signaling proteins. Mol. Cell. Proteomics. 5, 824–834.

    Article  CAS  PubMed  Google Scholar 

  47. Drabkin H.A., Parsy C., Ferguson K., Guilhot F., Lacotte L., Roy L., Zeng C., Baron A., Hunger S.P., Varella-Garcia M., Gemmill R., Brizard F., Brizard A., Roche J. 2002. Quantitative HOX expression in chromosomally defined subsets of acute myelogenous leukemia. Leukemia. 16, 186–195.

    Article  CAS  PubMed  Google Scholar 

  48. Lambert B., Vandeputte J., Remacle S., Bergiers I., Simonis N., Twizere J.C., Vidal M., Rezsohazy R. 2012. Protein interactions of the transcription factor Hoxa1. BMC Dev. Biol. 12, 29–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang H., Ouyang H., Lai L., Petrovic-Dovat L., Stankov K., Bogdanovic G., Dovat S. 2014. Pathogenesis and regulation of cellular proliferation in acute lymphoblastic leukemia: The role of Ikaros. J. BUON. 19, 22–28.

    PubMed  Google Scholar 

  50. Tonnelle C., Imbert M.C., Sainty D., Granjeaud S., N’Guyen C., Chabannon C. 2003. Overexpression of dominant-negative Ikaros 6 protein is restricted to a subset of B common adult acute lymphoblastic leukemias that express high levels of the CD34 antigen. Hematol. J. 4, 104–109.

    Article  CAS  PubMed  Google Scholar 

  51. Helming K.C., Wang X., Roberts C.W. 2014. Vulnerabilities of mutant SWI/SNF complexes in cancer. Cancer Cell. 26, 309–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Iborra F.J., Jackson D.A., Cook P.R. 2001. Coupled transcription and translation within nuclei of mammalian cells. Science. 293, 1139–1142.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Shestakova.

Additional information

The article was translated by the authors.

Published in Russian in Molekulyarnaya Biologiya, 2017, Vol. 51, No. 3, pp. 490–501.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shestakova, E.A., Boutin, M., Bourassa, S. et al. Identification of proteins associated with transcription factors HOXA9 and E2A-PBX1 by tandem affinity purification. Mol Biol 51, 432–444 (2017). https://doi.org/10.1134/S002689331703013X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689331703013X

Keywords

Navigation