Molecular Biology

, Volume 51, Issue 3, pp 432–444 | Cite as

Identification of proteins associated with transcription factors HOXA9 and E2A-PBX1 by tandem affinity purification

  • E. A. Shestakova
  • M. Boutin
  • S. Bourassa
  • E. Bonneil
  • J. J. Bijl
Molecular Cell Biology


Chimeric transcription factor E2A-PBX1 induces the development of acute lymphoblastic B-cell leukemia in children. Using a transgenic mouse model, we previously demonstrated that homeobox (HOX) gene HOXA9 genetically interact with E2A-PBX1 gene in the development of B-cell leukemia in mice. HOXA9 itself is a potent oncogene resulting in myeloid leukemia when overexpressed, which is strongly accelerated by its collaborator Meis1. HOX, PBX1 and MEIS1 proteins have been shown to form hetero dimeric or trimeric complexes in different combinations. Cooperative interaction between PBX1 and HOX proteins enhances their DNA binding specificity, essential for HOX dependent developmental programs. PBX1 is retained in E2A-PBX1, and thus the strong transcriptional activator properties of E2A-PBX1 may lead to aberrant activation of normally repressed targets of HOX-PBX complexes. However, although there is evidence that E2A-PBX1 could bind to HOX and MEIS1 proteins it is still unclear whether such complexes are actually required for leukemic transformation or whether E2A-PBX1 and HOXA9 are each part of larger protein complexes acting in independent complementing oncogenic pathways. In this study we aim to search for other HOXA9 and E2A-PBX1 interacting proteins. To identify novel proteins interacting with human E2A-PBX1 or HOXA9 we used tandem affinity purification (TAP) of protein complexes from 697 pre-B leukemic and HeLa cell lines transduced to express E2A-PBX1 or HOXA9, respectively, with covalently attached FLAG/HA peptides. The protein composition of each complex was determined using tandem mass-spectrometry. In the E2A-PBX1 containing complex we identified lymphoid transcription factor IKAROS, chromatin remodeling factors of SWI/SNF family while multiple subunits of translation initiation factor eIF3, E3 ubiquitin ligase UBR5 emerged from the HOXA9 complex as potential critical protein partners. This is the first time the protein partners of either E2A-PBX1 or HOXA9 oncoproteins were identified using an unbiased biochemical approach. The identification of translation initiation factors associated with HOXA9 might indicate a novel function for HOX proteins independent of their transcriptional activity.


transcription factors oncoproteins HOXA9 E2A-PBX1 tandem affinity purification tandem mass-spectrometry associated proteins oncogenic potential 



activation domain


acute lymphoid leukemia


acute myeloid leukemia


electrospray ionization tandem mass spectrometry




HOX Cooperative Domain


mass spectrometry


the Three Amino acid Loop Extension


tandem affinity purification


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Korsmeyer S.J. 1992. Chromosomal translocations in lymphoid malignancies reveal novel proto-oncogenes. Annu. Rev. Immunol. 10, 785–807.CrossRefPubMedGoogle Scholar
  2. 2.
    Kamps M.P., Murre C., Sun X.H., Baltimore D. 1990. A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell. 60, 547–555.CrossRefPubMedGoogle Scholar
  3. 3.
    Sykes D.B., Kamps M.P. 2004. E2a/Pbx1 induces the rapid proliferation of stem cell factor-dependent murine pro-T cells that cause acute T-lymphoid or myeloid leukemias in mice. Mol. Cell. Biol. 24, 1256–1269.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Aspland S.E., Bendall H.H., Murre C. 2001. The role of E2A-PBX1 in leukemogenesis. Oncogene. 20, 5708–5717.CrossRefPubMedGoogle Scholar
  5. 5.
    Bijl J., Sauvageau M., Thompson A., Sauvageau G. 2005. High incidence of proviral integrations in the HOXa locus in a new model of E2a-PBX1-induced B-cell leukemia. Genes Dev. 19, 224–233.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hassawi M., Shestakova E.A., Fournier M., Lebert-Ghali C.-E., Vaisson G., Frison H., Sinnett D., Vidal R., Thompson A., Bijl J.J. 2014. HOXa9 collaborates with E2A-PBX1 in mouse B cell leukemia in association with Flt3 activation and decrease of B cell gene expression. Dev. Dyn. 243, 145–158.CrossRefPubMedGoogle Scholar
  7. 7.
    Shestakova E.A., Hassawi M., Fournier M., Lebert-Ghali C.E., Frison H., Bijl J. 2010. Abstr. 17th Annual Research Conference of HMR Research Center of the University of Montreal, Montreal, Canada, p. 28.Google Scholar
  8. 8.
    Shestakova E.A., Hassawi M., Fournier M., Lebert-Ghali C.-E., Frison H., Bijl J. 2011. Abstr. 18th Annual Research Conference of HMR Research Center of the University of Montreal, Montreal, Canada, p. 55.Google Scholar
  9. 9.
    Shestakova E.A., Hassawi M., Fournier M., Lebert-Ghali C.E., Frison H., Bijl J. 2012. Abstr. 5th Annual Canadian Cancer Immune Therapy Symposium, Montreal, Canada, p. 6.Google Scholar
  10. 10.
    Fournier M., Hassawi M., Frison H., Lebert-Ghali C.E., Shestakova E., Bijl J. 2010. Paralog 4 genes HOXA4 and HOXB4 induce a strong expansion of B-cell progenitors in vitro in the context of E2A-PBX. 15th Congress of the European Hematology Association. 2010, Barcelona, Spain. Haematologica. 95 (Suppl. 2), 228. Abstr. 0554.Google Scholar
  11. 11.
    Fournier M., Savoie-Rondeau I., Larochelle F., Hassawi M., Shestakova E.A., Roy D.C., Bijl J.J. 2014. Inability of HOXB4 to enhance self-renewal of malignant B cells: Favorable profile for the expansion of autologous hematopoietic stem cells. Exp. Hematol. 42, 526–535.CrossRefPubMedGoogle Scholar
  12. 12.
    Thorsteinsdottir U., Krosl J., Kroon E., Haman A., Hoang T., Sauvageau G. 1999. The oncoprotein E2APbx1a collaborates with HOXa9 to acutely transform primary bone marrow cells. Mol. Cell. Biol. 19, 6355–6366.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bijl J., Krosl J., Lebert-Ghali C.E., Vacher J., Mayotte N., Sauvageau G. 2008. Evidence for HOX and E2A-PBX1 collaboration in mouse T-cell leukemia. Oncogene. 27, 6356–6364.CrossRefPubMedGoogle Scholar
  14. 14.
    LeBrun D.P., Cleary M.L. 1994. Fusion with E2A alters the transcriptional properties of the homeodomain protein PBX1 in t(1;19) leukemias. Oncogene. 9, 1641–1647.PubMedGoogle Scholar
  15. 15.
    Lu Q., Wright D.D., Kamps M.P. 1994. Fusion with E2A converts the Pbx1 homeodomain protein into a constitutive transcriptional activator in human leukemias carrying the t(1;19) translocation. Mol. Cell. Biol. 14, 3938–3948.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Massari M.E., Grant P.A., Pray-Grant M.G., Berger S.L., Workman J.L., Murre C. 1999. A conserved motif present in a class of helix-loop-helix proteins activates transcription by direct recruitment of the SAGA complex. Mol. Cell. 4, 63–73.CrossRefPubMedGoogle Scholar
  17. 17.
    Bayly R., Chuen L., Currie R.A., Hyndman B.D., Casselman R., Blobel G.A., LeBrun D.P. 2004. E2A-PBX1 interacts directly with the KIX domain of CBP/p300 in the induction of proliferation in primary hematopoietic cells. J. Biol. Chem. 279, 55362–55371.CrossRefPubMedGoogle Scholar
  18. 18.
    Bayly R., Murase T., Hyndman B.D., Savage R., Nurmohamed S., Munro K., Casselman R., Smith S.P., LeBrun D.P. 2006. Critical role for a single leucine residue in leukemia induction by E2A-PBX1. Mol. Cell. Biol. 26, 6442–6452.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Quong M.W., Romanow W.J., Murre C. 2002. E protein function in lymphocyte development. Annu. Rev. Immunol. 20, 301–322.CrossRefPubMedGoogle Scholar
  20. 20.
    Lu Q., Kamps M.P. 1997. Heterodimerization of HOX proteins with Pbx1 and oncoprotein E2a-Pbx1 generates unique DNA-binding specificities at nucleotides predicted to contact the N-terminal arm of the HOX homeodomain: Demonstration of HOX-dependent targeting of E2a-Pbx1 in vivo. Oncogene. 14, 75–83.CrossRefPubMedGoogle Scholar
  21. 21.
    Lu Q., Knoepfler P.S., Scheele J., Wright D.D., Kamps M.P. 1995. Both Pbx1 and E2Aa-Pbx1 bind the DNA motif ATCAATCAA cooperatively with the products of multiple murine HOX genes, some of which are themselves oncogenes. Mol. Cell. Biol. 15, 3786–3795.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bach C., Buhl S., Mueller D., Garcia-Cuellar M.P., Maethner E., Slany R.K. 2010. Leukemogenic transformation by HOXA cluster genes. Blood. 115, 2910–2918.CrossRefPubMedGoogle Scholar
  23. 23.
    Kroon E., Krosl J., Thorsteinsdottir U., Baban S., Buchberg A.M., Sauvageau G. 1998. HOXa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J. 17, 3714–3725.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Thorsteinsdottir U., Sauvageau G., Hough M.R., Dragowska W., Lansdorp P.M., Lawrence H.J., Largman C., Humphries R.K. 1997. Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia. Mol. Cell Biol. 17, 495–505.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Thorsteinsdottir U., Kroon E., Jerome L., Blasi F., Sauvageau G. 2001. Defining roles for HOX and MEIS1 genes in induction of acute myeloid leukemia. Mol. Cell Biol. 21, 224–234.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sauvageau G., Thorsteinsdottir U., Hough M.R., Hugo P., Lawrence H.J., Largman C., Humphries R.K. 1997. Overexpression of HOXB3 in hematopoietic cells causes defective lymphoid development and progressive myeloproliferation. Immunity 6, 13–22.CrossRefPubMedGoogle Scholar
  27. 27.
    Perkins A.C., Cory S. 1993. Conditional immortalization of mouse myelomonocytic, megakaryocytic and mast cell progenitors by the HOX-2.4 homeobox gene. EMBO J. 12, 3835–3846.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Fischbach N.A., Rozenfeld S., Shen W., Fong S., Chrobak D., Ginzinger D., Kogan S.C., Radhakrishnan A., Le Beau M.M., Largman C., Lawrence H.J. 2005. HOXB6 overexpression in murine bone marrow immortalizes a myelomonocytic precursor in vitro and causes hematopoietic stem cell expansion and acute myeloid leukemia in vivo. Blood. 105, 1456–1466.CrossRefPubMedGoogle Scholar
  29. 29.
    Lawrence H.J., Rozenfeld S., Cruz C., Matsukuma K., Kwong A., Komuves L., Buchberg A.M., Largman C. 1999. Frequent co-expression of the HOXA9 and MEIS1 homeobox genes in human myeloid leukemias. Leukemia 13, 1993–1999.CrossRefPubMedGoogle Scholar
  30. 30.
    Huang Y., Sitwala K., Bronstein J., Sanders D., Dandekar M., Collins C., Robertson G., MacDonald J., Cezard T., Bilenky M., Thiessen N., Zhao Y., Zeng T., Hirst M., Hero A., Jones S., Hess J.L. 2012. Identification and characterization of HOXa9 binding sites in hematopoietic cells. Blood. 119, 388–398.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Shen W.F., Rozenfeld S., Kwong A., Komuves L.G., Lawrence H.J., Largman C. 1999. HOXA9 forms triple complexes with PBX2 and MEIS1 in myeloid cells. Mol. Cell. Biol. 19, 3051–3061.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Jacobs Y., Schnabel C.A., Cleary M.L. 1999. Trimeric association of HOX and TALE homeodomain proteins mediates HOXb2 hindbrain enhancer activity. Mol. Cell. Biol. 19, 5134–5142.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Nakatani Y., Ogryzko V. 2003. Immuno affinity purification of mammalian protein complexes. Methods Enzymol. 370, 430–444.CrossRefPubMedGoogle Scholar
  34. 34.
    Tagami H., Ray-Gallet D., Almouzni G., Nakatani Y. 2004. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell. 116, 51–61.CrossRefPubMedGoogle Scholar
  35. 35.
    Nakatani Y., Tagami H., Shestakova E. 2006. How is epigenetic information on chromatin inherited after DNA replication? In: The Histone Code and Beyond. New Approaches to Cancer Therapy, Ernst Schering Research Foundation Workshop 57, vol. 57. Eds. Berger S.L., Nakanishi O., Haendler B. Springer, pp. 89–96.Google Scholar
  36. 36.
    Shestakova E.A., Nakatani Y. 2015. Characterization of histone predeposition complexes from different cellular compartments. J. Investig. Genomics 2, 00017. doi 10.15406/jig.2015.02.00017Google Scholar
  37. 37.
    Shestakova E.A. 2015. Different mechanisms of epigenetic regulation of gene expression. MOJ Cell Sci. Rep. 2, 00019. doi 10.15406/mojcsr.2015.02.00019CrossRefGoogle Scholar
  38. 38.
    Shevchenko A., Tomas H., Havlis J., Olsen J.V., Mann M. 2006. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protoc. 1, 2856–2860.CrossRefGoogle Scholar
  39. 39.
    Havlis J., Thomas H., Sebela M., Shevchenko A. 2003. Fast-response proteomics by accelerated in-gel digestion of proteins. Anal. Chem. 75, 1300–1306.CrossRefPubMedGoogle Scholar
  40. 40.
    Keller A., Nesvizhskii A.I., Kolker E., Aebersold R. 2002. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392.CrossRefPubMedGoogle Scholar
  41. 41.
    Nesvizhskii A.I., Keller A., Kolker E., Aebersold R. 2003. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658.CrossRefPubMedGoogle Scholar
  42. 42.
    Aebersold R., Mann M. 2003. Mass spectrometrybased proteomics. Nature. 422, 198–207.CrossRefPubMedGoogle Scholar
  43. 43.
    Topisirovic I., Kentsis A., Perez J.M., Guzman M.L., Jordan C.T., Borden K.L.B. 2005. Eukaryotic translation initiation factor 4E activity is modulated by HOXA9 at multiple levels. Mol. Cell. Biol. 25, 1100–1112.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Silvera D., Formenti S.C., Schneider R.J. 2010. Translational control in cancer. Nat. Rev. Cancer. 10, 254–266.CrossRefPubMedGoogle Scholar
  45. 45.
    Hershey J.W. 2015. The role of eIF3 and its individual subunits in cancer. Biochim. Biophys. Acta. 1849, 792–800.CrossRefPubMedGoogle Scholar
  46. 46.
    Bondos S.E., Tan X.X., Matthews K.S. 2006. Physical and genetic interactions link Hox function with diverse transcription factors and cell signaling proteins. Mol. Cell. Proteomics. 5, 824–834.CrossRefPubMedGoogle Scholar
  47. 47.
    Drabkin H.A., Parsy C., Ferguson K., Guilhot F., Lacotte L., Roy L., Zeng C., Baron A., Hunger S.P., Varella-Garcia M., Gemmill R., Brizard F., Brizard A., Roche J. 2002. Quantitative HOX expression in chromosomally defined subsets of acute myelogenous leukemia. Leukemia. 16, 186–195.CrossRefPubMedGoogle Scholar
  48. 48.
    Lambert B., Vandeputte J., Remacle S., Bergiers I., Simonis N., Twizere J.C., Vidal M., Rezsohazy R. 2012. Protein interactions of the transcription factor Hoxa1. BMC Dev. Biol. 12, 29–46.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wang H., Ouyang H., Lai L., Petrovic-Dovat L., Stankov K., Bogdanovic G., Dovat S. 2014. Pathogenesis and regulation of cellular proliferation in acute lymphoblastic leukemia: The role of Ikaros. J. BUON. 19, 22–28.PubMedGoogle Scholar
  50. 50.
    Tonnelle C., Imbert M.C., Sainty D., Granjeaud S., N’Guyen C., Chabannon C. 2003. Overexpression of dominant-negative Ikaros 6 protein is restricted to a subset of B common adult acute lymphoblastic leukemias that express high levels of the CD34 antigen. Hematol. J. 4, 104–109.CrossRefPubMedGoogle Scholar
  51. 51.
    Helming K.C., Wang X., Roberts C.W. 2014. Vulnerabilities of mutant SWI/SNF complexes in cancer. Cancer Cell. 26, 309–317.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Iborra F.J., Jackson D.A., Cook P.R. 2001. Coupled transcription and translation within nuclei of mammalian cells. Science. 293, 1139–1142.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • E. A. Shestakova
    • 1
    • 2
  • M. Boutin
    • 3
  • S. Bourassa
    • 3
  • E. Bonneil
    • 4
  • J. J. Bijl
    • 1
    • 5
  1. 1.HMR Research CenterUniversity of MontrealMontrealCanada
  2. 2.Blokhin Russian Cancer Research CenterMoscowRussia
  3. 3.Proteomic PlatformCHU de Quebec Research CenterQuebecCanada
  4. 4.Proteomic Platform, IRICUniversity of MontrealMontrealCanada
  5. 5.Department of MedicineUniversity of MontrealMontrealCanada

Personalised recommendations