Skip to main content
Log in

Human selenium-containing single-chain variable fragment with glutathione peroxidase activity protects NIH3T3 fibroblast against oxidative damage

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Ultraviolet B (UVB medium wave, 280–315 nm) induces cellular oxidative damage and apoptosis by producing reactive oxygen species (ROS). Glutathione peroxidase functions as an antioxidant by catalyzing the reduction of hydrogen peroxide, the more important member of reactive oxygen species. A human selenium-containing single-chain variable fragment (se-scFv-B3) with glutathione peroxidase activity of 1288 U/μmol was generated and investigated for its antioxidant effects in UVB-induced oxidative damage model. In particular, cell viability, lipid peroxidation extent, cell apoptosis, the change of mitochondrial membrane potential, caspase-3 activity and the levels of intracellular reactive oxygen species were assayed. Human se-scFv-B3 protects NIH3T3 cells against ultraviolet B-induced oxidative damage and subsequent apoptosis by prevention of lipid peroxidation, inhibition of the collapse of mitochondrial membrane potential as well as the suppression of the caspase-3 activity and the level of intracellular ROS. It seems that antioxidant effects of human se-scFv-B3 are mainly associated with its capability to scavenge reactive oxygen species, which is similar to that of the natural glutathione peroxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ROS:

reactive oxygen species

H2O2 :

hydrogen peroxide

GPX:

Glutathione peroxidase

UVB:

ultraviolet B

se-scFv:

selenium-containing single-chain variable fragment

MDA:

malondialdehyde

DiOC6(3):

3,3-dihexyloxacarbocyanine iodide

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

ΔΨm :

mitochondrial membrane potential

References

  1. Castro L., Freeman B.A. 2001. Reactive oxygen species in human health and disease. Nutrition. 17, 161–165.

    Article  CAS  PubMed  Google Scholar 

  2. Michies C., Raes M., Toussaaint O., Remacle J. 1994. Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Rad. Biol. Med. 17, 235–248.

    Article  Google Scholar 

  3. Jiang Z.H., Mu Y., Li W.J., Yan G.L., Luo G.M. 2002. The progress in mechanism of selenoprotein biosynthesis. Acta Biochim. Biophys. Sin. 34, 395–399.

    CAS  PubMed  Google Scholar 

  4. Davis R.L., Lavine C.L., Arredondo M.A., McMahon P., Tenner T.E., Jr. 2002. Differential indicators of diabetes- induced oxidative stress in New Zealand white rabbits: Role of dietary vitamin E supplementation. Int. J. Exp. Diabetes. Res. 3, 185–192.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Burke M.P., Opeskin K. 2002. Fulminant heart failure due to selenium deficiency cardiomyopathy (Keshan Disease). Med. Sci. Law. 42, 10–13.

    Article  PubMed  Google Scholar 

  6. Forgione M.A., Cap A., Liao R., Moldovan N.I., Eberhardt R.T., Lim C.C., Jones J., Goldschmidt-Clermont P.J., Loscalzo J. 2002. Heterozygous cellular glutathione peroxidase deficiency in the mouse: Abnormalities in vascular and cardiac function and structure. Circulation. 106, 1154–1158.

    Article  CAS  PubMed  Google Scholar 

  7. Babizhayev M.A. 1996. Failure to withstand oxidative stress induced by phospholipid hydroperoxides as a possible cause of the lens opacities in systemic diseases and ageing. Biochem. Biophys. Acta. 1315, 87–99.

    PubMed  Google Scholar 

  8. Ramakrishnan N., Kalinich J.F., McClain D.E. 1996. Ebselen inhibition of apoptosis by reduction of peroxides. Biochem. Pharmacol. 51, 1443–1451.

    Article  CAS  PubMed  Google Scholar 

  9. Luo G.M., Zhu Z.Q., Ding L., Gao G., Sun Q.A., Liu Z., Yang T.S., Shen J.C. 1994. Generation of seleniumcontaining abzyme by chemical mutation. Biochem. Biophys. Res. Comm. 198, 1240–1247.

    Article  CAS  PubMed  Google Scholar 

  10. Su D., Ren X.J., You D.L., Li D., Mu Y., Yan G.L., Zhang Y., Luo Y.M., Xue Y., Shen J.C., Liu Z., Luo G.M. 2001. Generation of three selenium-containing catalytic antibodies with high catalytic efficiency using a novel hapten design method. Arch. Biochem. Biophys. 395, 177–184.

    Article  CAS  PubMed  Google Scholar 

  11. Ren X.J., Gao S.J., You D.L., Huang H.L., Liu Z., Mu Y., Liu J.Q., Zhang Y., Yan G.L., Luo G.M., Yang T.S., Shen J.C. 2001. Cloning and expression of a singlechain catalytic antibody that acts as a glutathione peroxidase mimic with high catalytic efficiency. Biochem. J. 359, 369–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sun Y., Mu Y., Li W. J., Lv S.W., Jiang Z.H., Zhang K., Zheng K.Y., Lin F., Yan G.Y., Luo G.M., Liu J.Q., Shen J.C. 2003. Protection of epidermal cells against UVB injury by the antioxidant selenium-containing single-chain Fv catalytic antibody. Arch. Biochem. Biophys. 412, 90–94.

    Article  CAS  PubMed  Google Scholar 

  13. Huo R., Wei J.Y., Xu J.J., Lv S.W., Zheng Q.C., Yan F., Su J.M., Fan J., Li J.S., Duan Y.J., Yu Y., Jin F.H., Sun W.G., Shi Y., Cong D.L., Li W., Yan G.L., Luo G.M. 2008. Human catalytic antibody Se-scFv-B3 with high glutathione peroxidase activity. J. Mol. Recognit. 21, 324–329.

    Article  PubMed  Google Scholar 

  14. Huo R., Shi Y., Xu J.J., Yan F., Lv S.W., Su J.M., Duan Y.J., Fan J., Ning B., Cong D.L., Yan G.L., Luo G.M., Wei J.Y. 2009. Antioxidant effect of human selenium-containing single-chain Fv in rat cardiac myocytes. Chem. Res. Chinese Universities. 25, 216–219.

    CAS  Google Scholar 

  15. Sun Y., Mu Y., Ma S.M., Gong P.S., Yan G.L., Liu J.Q., Shen J.C., Luo G.M. 2005. The molecular mechanism of protecting cells against oxidative stress by 2-selenium-bridged beta-cyclodextrin with glutathione peroxidase activity. Biochim. Biophys. Acta. 1743, 199–204.

    Article  CAS  PubMed  Google Scholar 

  16. Huo R., Zhou Q.L., Wang B.X., Tashiro S.I., Onodera S., Ikejima T. 2004. Diosgenin induces apoptosis in HeLa cells via activation of caspase pathway. Acta. Pharmacologica. Sinica. 25, 1077–1082.

    CAS  Google Scholar 

  17. Ryoo Y.W., Suh S.I., Mun K.C., Kim B.C., Lee K.S. 2001. The effects of the melatonin on ultraviolet-B irradiated cultured dermal fibroblasts. J. Dermatol. Sci. 27, 162–169.

    Article  CAS  PubMed  Google Scholar 

  18. Fischer T.W., Scholz G., Knöll., Hipler U.C., Elsner P. 2001. Melatonin reduces UV-induced reactive oxygen species in a dose-dependent manner in IL-3-stimulated leukocytes. J. Pineal Res. 31, 39–45.

    Article  CAS  PubMed  Google Scholar 

  19. Moison R.M., Beijersbergen V., Henegouwen G.M. 2001. Dietary eicosapentaenoic acid prevents systemic immunosuppression in mice induced by UVB radiation. Radiat. Res. 156, 36–44.

    Article  CAS  PubMed  Google Scholar 

  20. Cordis G.A., Bagchi D., Maulik N., Das D.K. 1994. High-performance liquid chromatographic method for the simultaneous detection of malonaldehyde, acetaldehyde, formaldehyde, acetone and propionaldehyde to monitor the oxidative stress in heart. J. Chromatogr. A. 661, 181–191.

    Article  CAS  PubMed  Google Scholar 

  21. Kawazoe N., Watabe M., Masuda Y., Nakajo S., Nakayo K. 1999. Tiami1 is involved in the regulation of bufalin-induced apoptosis in human leukemia cells. Oncongene. 18, 2413–2421.

    Article  CAS  Google Scholar 

  22. Fu J.J., Huang H.Q., Liu J.J., Pi R.B., Chen J.W., Liu P.Q. 2007. Tanshinone IIA protects cardiac myocytes against oxidative stress-triggered damage and apoptosis. Eur. J. Pharmacol. 568, 213–221.

    Article  CAS  PubMed  Google Scholar 

  23. Yin L., Han X., Yu Y., Guo X., Ren L.Q., Fang J.Q., Liu Z.Y., Yan G.L., Wei J.Y. 2012. Antioxidant effect of selenium-containing glutathione S-transferase in rat cardiomyocytes. Chem. Res. Chinese Univ. 28, 454–458.

    CAS  Google Scholar 

  24. Matsuda K., Yoshida K., Taya Y., Nakamura K., Nakamura Y., Arakawa H. 2002. p53AIP1 regulates the mitochondrial apoptotic pathway. Cancer. Res. 62, 2883–2889.

    CAS  PubMed  Google Scholar 

  25. Petronilli V., Costantini P., Scorrano L., Colonna R., Passamonti S., Bernardi P. 1994. The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation–reduction state of vicinal thiols: Increase of the gating potential by oxidants and its reversal by reducing agents. J. Biol. Chem. 269, 16638–16642.

    CAS  PubMed  Google Scholar 

  26. Wu X.H., Cao S.G., Goh S., Hsu A., Tan B.K. 2002. Mitochondrial destabilisation and caspase-3 activation are involved in the apoptosis of Jurkat cells induced by gaudichaudione A, a cytotoxic xanthone. Planta Med. 68, 198–203.

    Article  CAS  PubMed  Google Scholar 

  27. Armstrong J.S. 2006. The role of the mitochondrial permeability transition in cell death. Mitochondrion. 6, 225–234.

    Article  CAS  PubMed  Google Scholar 

  28. Wolf B.B., Schulert M., Echeverri F., Green D.R. 1999. Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation. J. Biol. Chem. 274, 30651–30656.

    Article  CAS  PubMed  Google Scholar 

  29. Cai L., Li W., Wang G., Guo L., Jiang Y., Kang Y.J. 2002. Hyperglycemia-induced apoptosis in mouse myocardium: Mitochondrial cytochrome c-mediated caspase-3 activation pathway. Diabetes. 51, 1938–1948.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Y. Wei.

Additional information

Published in Russian in Molekulyarnaya Biologiya, 2017, Vol. 51, No. 3, pp. 483–489.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, R., Yang, L., Zhang, T.G. et al. Human selenium-containing single-chain variable fragment with glutathione peroxidase activity protects NIH3T3 fibroblast against oxidative damage. Mol Biol 51, 426–431 (2017). https://doi.org/10.1134/S0026893317030074

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893317030074

Keywords

Navigation