Skip to main content
Log in

The spectrum of mutations in genes associated with resistance to rifampicin, isoniazid, and fluoroquinolones in the clinical strains of M. tuberculosis reflects the transmissibility of mutant clones

  • Genomics. Transcriptomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

To study the transmissibility of drug resistant mutant clones, M. tuberculosis samples were isolated from the patients of the clinical department and the polyclinic of the Central TB Research Institute (n = 1455) for 2011–2014. A number of clones were phenotypically resistant to rifampicin (n = 829), isoniazid (n = 968), and fluoroquinolones (n = 220). We have detected 21 resistance-associated variants in eight codons of rpoB, six variants in three codons of katG, three variants in two positions of inhA, four variants in four positions of ahpC, and nine variants in five codons of gyrA, which were represented in the analyzed samples with varied frequencies. Most common mutations were rpoB 531 Ser→Leu (77.93%), katG 315 (Ser→Thr) (94.11%), and gyrA 94 (Asp→Gly) (45.45%). We found that the mutations at position 15 of inhA (C→T) (frequency of 25.72%) are commonly associated with katG 315 (Ser→Thr). This association of two DNA variants may arise due to the double selection by coexposure of M. tuberculosis to isoniazid and ethionamide. The high transmissibility of mutated strains was observed, which may be explained by the minimal influence of the resistance determinants on strain viability. The high transmissibility of resistant variants may also explain the large populational prevalence of drug-resistant TB strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MTB:

Mycobacterium tuberculosis

SNP:

single-nucleotide polymorphism

References

  1. Zhang Y., Yew W.W. 2009. Mechanisms of drug resistance in Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 13, 1320–1330.

    CAS  PubMed  Google Scholar 

  2. Andersson D.I., Levin B.R. 1999. The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 2, 489–493.

    Article  CAS  PubMed  Google Scholar 

  3. Burgos M., DeRiemer K., Small P.M., Hopewell P.C., Daley C.L. 2003. Effect of drug resistance on the generation of secondary cases of tuberculosis. J. Infect. Dis. 188, 1878–1884.

    Article  PubMed  Google Scholar 

  4. Dye C., Williams B.G., Espinal M.A., Raviglione M.C. 2002. Erasing the world’s slow stain: Strategies to beat multidrug-resistant tuberculosis. Science. 295, 2042–2046.

    Article  CAS  PubMed  Google Scholar 

  5. Mariam D.H., Mengistu Y., Hoffner S.E., Andersson D.I. 2004. Effect of rpoB mutations conferring rifampin resistance on fitness of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 48, 1289–1294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Global Tuberculosis Report. 2015. Geneva, Switzerland: World Health Organization.

  7. Siddiqi S.H., Rusch-Gerdes S. 2006. MGIT Procedure Manual for BACTEC MGIT 960TB System.

    Google Scholar 

  8. Lin S.Y.G., Desmond E., Bonato D., Gross W., Siddiqi S. 2009. Multicenter evaluation of BACTEC MGIT 960 system for second-line drug susceptibility testing of Mycobacterium tuberculosis complex. J. Clin. Microbiol. 47, 3630‒3634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sandgren A., Strong M., Muthukrishnan P., Weiner B.K., Church G.M., Murray M.B. 2009. Tuberculosis drug resistance mutation database. PLoS Med. 6, e1000002.

    Article  Google Scholar 

  10. Borrell S, Gagneux S. 2009. Infectiousness, reproductive fitness and evolution of drug-resistant Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 13, 1456–1466.

    CAS  PubMed  Google Scholar 

  11. Böttger E.C., Springer B. 2008. Tuberculosis: Drug resistance, fitness, and strategies for global control. Eur. J. Pediatr. 167, 141–148.

    Article  PubMed  Google Scholar 

  12. Zaczek A., Brzostek A., Augustynowicz-Kopec E., Zwolska Z., Dziadek J. 2009. Genetic evaluation of relationship between mutations in rpoB and resistance of Mycobacterium tuberculosis to rifampin. BMC Microbiol. 9, e10.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fenner L., Egger M., Bodmer T., Altpeter E., Zwahlen M., Jaton K., Pfyffer G.E., Borrell S., Dubuis O., Bruderer T., Siegrist H.H., Furrer H., Calmy A., Fehr J., Stalder J.M., et al. 2012. Effect of mutation and genetic background on drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 56, 3047–3053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Trauner A., Borrell S., Reither K., Gagneux S. 2014. Evolution of drug resistance in tuberculosis: Recent progress and implications for diagnosis and therapy. Drugs. 74, 1063–1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Van Doorn H.R., de Haas P.E., Kremer K., Vandenbroucke-Grauls C.M., Borgdorff M.W., Van Soolingen D. 2006. Public health impact of isoniazid-resistant Mycobacterium tuberculosis strains with a mutation at aminoacid position 315 of katG: A decade of experience in The Netherlands. Clin. Microbiol. Infect. 12, 769–775.

    Article  PubMed  Google Scholar 

  16. Gagneux S., Burgos M.V., DeRiemer K., Encisco A., Muñoz S., Hopewell P.C., Small P.M., Pym A.S. 2006. Impact of bacterial genetics on the transmission of isoniazid-resistant Mycobacterium tuberculosis. PLoS Pathog. 2, e61.

    Article  Google Scholar 

  17. Gagneux S., Long C.D., Small P.M., Van T., Schoolnik G.K., Bohannan B.J. 2006. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science. 312, 1944–1946.

    Article  CAS  PubMed  Google Scholar 

  18. Pym A.S, Saint-Joanis B., Cole S.T. 2002. Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infect. Immun. 70, 4955–4960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rouse D.A., DeVito J.A., Li Z., Byer H., Morris S.L. 1996. Site directed mutagenesis of the katG gene of Mycobacterium tuberculosis: Effects on catalase-peroxidase activities isoniazid resistance. Mol. Microbiol. 22, 583–592.

    Article  CAS  PubMed  Google Scholar 

  20. Van Soolingen D., de Haas P.E., Van Doorn H.R., Kuijper E., Rinder H., Borgdorff M.W. 2000. Mutations at amino acid position 315 of the katG gene are associated with high-level resistance to isoniazid, other drug resistance, and successful transmission of Mycobacterium tuberculosis in the Netherlands. J. Infect. Dis. 182, 1788–1790.

    Article  PubMed  Google Scholar 

  21. Dalla Costa E.R., Ribeiro M.O., Silva M.S., Arnold L.S., Rostirolla D.C., Cafrune P.I., Espinoza R.C., Palaci M., Telles M.A., Ritacco V., Suffys P.N., Lopes M.L., Campelo C.L., Miranda S.S., et al. 2009. Correlations of mutations in katG, oxyR-ahpC and inhA genes and in vitro susceptibility in Mycobacterium tuberculosis clinical strains segregated by spoligotype families from tuberculosis prevalent countries in South America. BMC Microbiol. 9, e39.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Casali N., Nikolayevskyy V., Balabanova Y., Harris S.R., Ignatyeva O., Kontsevaya I., Corander J., Bryant J., Parkhill J., Nejentsev S., Horstmann R.D., Brown T., Drobniewski F. 2014. Evolution and transmission of drug-resistant tuberculosis in a Russian population. Nat. Genet. 46, 279–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mokrousov I., Narvskaya O., Otten T., Limeschenko E., Steklova L., Vyshnevskiy B. 2002. High prevalence of KatG Ser315Thr substitution among isoniazid-resistant Mycobacterium tuberculosis clinical isolates from northwestern Russia, 1996 to 2001. Antimicrob. Agents Chemother. 46, 1417–1424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wilson T.M., de Lisle G.W., Collins D.M. 1995. Effect of inhA and katG on isoniazid resistance and virulence of Mycobacterium bovis. Mol. Microbiol. 15, 1009–1015.

    Article  CAS  PubMed  Google Scholar 

  25. Banerjee A., Dubnau E., Quemard A., Balasubramanian V., Um K.S., Wilson T., Collins D., de Lisle G., Jacobs W.R. 1994. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science. 263, 227–230.

    Article  CAS  PubMed  Google Scholar 

  26. Avalos E., Catanzaro D., Catanzaro A., Ganiats T., Brodine S., Alcaraz J., Rodwell T. 2015. Frequency and geographic distribution of gyrA and gyrB mutations associated with fluoroquinolone resistance in clinical Mycobacterium tuberculosis isolates: A systematic review. PLoS ONE. 10, e0120470.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Andreevskaya.

Additional information

Original Russian Text © A. Ergeshov, S.N. Andreevskaya, E.E. Larionova, T.G. Smirnova, L.N. Chernousova, 2017, published in Molekulyarnaya Biologiya, 2017, Vol. 51, No. 4, pp. 595–602.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ergeshov, A., Andreevskaya, S.N., Larionova, E.E. et al. The spectrum of mutations in genes associated with resistance to rifampicin, isoniazid, and fluoroquinolones in the clinical strains of M. tuberculosis reflects the transmissibility of mutant clones. Mol Biol 51, 526–532 (2017). https://doi.org/10.1134/S0026893317030049

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893317030049

Keywords

Navigation