Skip to main content
Log in

3D structure of DKK1 indicates its involvement in both canonical and non-canonical Wnt pathways

  • Structural and Functional Analysis of Biopolymers and Their Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Dikkoppf-1 (DKK1) is an antagonist of the canonical Wnt signaling pathway. The importance of DKK1 as a diagnostic and therapeutic agent in a wide range of diseases along with its significance in a variety of biological processes accentuate the necessity to decipher its 3D structure that would pave the way towards the development of relevant selective inhibitors. A DKK1 structure model predicted by the Robetta server with structural refinements including a 10 ns molecular dynamics run was subjected to functional and docking analyses. We hypothesize that the N-terminal region of the DKK1 molecule could be functionally important for both canonical and noncanonical Wnt pathways. Moreover, it seems that DKK1 could be involved in interactions with the Frizzled receptors, leading to the activation of the Planar Cell Polarity (PCP) pathway (activation of Jun N-terminal kinase (JNK) Pathway) and Wnt/Ca2+ pathway (activation of CamKII).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cadigan K.M., Nusse R. 1997. Wnt signaling: A common theme in animal development. Gen. Develop. 11, 3286–3305.

    Article  CAS  Google Scholar 

  2. Huelsken J., Birchmeier W. 2001. New aspects of Wnt signaling pathways in higher vertebrates. Curr. Opin. Gen. Develop. 11, 547–553.

    Article  CAS  Google Scholar 

  3. Kikuchi A. 2000. Regulation of ß-catenin signaling in the Wnt pathway. Biochem. Biophys. Res. Comm. 268, 243–248.

    Article  CAS  PubMed  Google Scholar 

  4. Lee D.K., Grantham R.N., Trachte A.L., Mannion J.D., Wilson C.L. 2006. Activation of the canonical Wnt/ß-catenin pathway enhances monocyte adhesion to endothelial cells. Biochem. Biophys. Res. Comm. 347, 109–116.

    Article  CAS  PubMed  Google Scholar 

  5. Masckauchán T.N.H., Shawber C.J., Funahashi Y., Li C.-M., Kitajewski J. 2005. Wnt/ß-catenin signaling induces proliferation, survival and interleukin-8 in human endothelial cells. Angiogenesis. 8, 43–51.

    Article  PubMed  Google Scholar 

  6. Pandur P., Maurus D., Kühl M. 2002. Increasingly complex: New players enter the Wnt signaling network. Bioessays. 24, 881–884.

    Article  CAS  PubMed  Google Scholar 

  7. Ueland T., Otterdal K., Lekva T., Halvorsen B., Gabrielsen A., Sandberg W.J. Paulsson-Berne G., Pedersen T.M., Folkersen L., Gullestad L. 2009. Dickkopf-1 enhances inflammatory interaction between platelets and endothelial cells and shows increased expression in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 29, 1228–1234.

    Article  CAS  PubMed  Google Scholar 

  8. Zerlin M., Julius M.A., Kitajewski J. 2008. Wnt/Frizzled signaling in angiogenesis. Angiogenesis. 11, 63–69.

    Article  CAS  PubMed  Google Scholar 

  9. Bafico A., Liu G., Yaniv A., Gazit A., Aaronson S.A. 2001. Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat. Cell Biol. 3, 683–686.

    Article  CAS  PubMed  Google Scholar 

  10. González-Sancho J.M., Aguilera O., García J.M., Pendás-Franco N., Peña C., Cal S., de Herreros A.G., Bonilla F., Muñoz A. 2005. The Wnt antagonist DICKKOPF-1 gene is a downstream target of ß-catenin/TCF and is downregulated in human colon cancer. Oncogene. 24, 1098–10103.

    Article  PubMed  Google Scholar 

  11. Mao B., Wu W., Davidson G., Marhold J., Li M., Mechler B.M., Delius H., Hoppe D., Stannek P., Walter C. 2002. Kremen proteins are Dickkopf receptors that regulate Wnt/ß-catenin signalling. Nature. 417 (6889), 664–667.

    Article  CAS  PubMed  Google Scholar 

  12. Willert K., Jones K.A. 2006. Wnt signaling: Is the party in the nucleus? Gen. Develop. 20, 1394–1404.

    Article  CAS  Google Scholar 

  13. Marvin M.J., Di Rocco G., Gardiner A., Bush S.M., Lassar A.B. 2001. Inhibition of Wnt activity induces heart formation from posterior mesoderm. Gen. Develop. 15, 316–327.

    Article  CAS  Google Scholar 

  14. Niehrs C. 2006. Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene. 25, 7469–7481.

    Article  CAS  PubMed  Google Scholar 

  15. Krupnik V.E., Sharp J.D., Jiang C., Robison K., Chickering T.W, Amaravadi L., Brown D.E., Guyot D., Mays G., Leiby K. 1999. Functional and structural diversity of the human Dickkopf gene family. Gene. 238, 301–313.

    Article  CAS  PubMed  Google Scholar 

  16. Kuphal S., Lodermeyer S., Bataille F., Schuierer M., Hoang B., Bosserhoff A. 2006. Expression of Dickkopf genes is strongly reduced in malignant melanoma. Oncogene. 25, 5027–5036.

    Article  CAS  PubMed  Google Scholar 

  17. Vibhakar R., Foltz G., Yoon J.-G., Field L., Lee H., Ryu G.-Y., Pierson J., Davidson B., Madan A. 2007. Dickkopf-1 is an epigenetically silenced candidate tumor suppressor gene in medulloblastoma. Neurooncology. 9 (2), 135–144.

    CAS  Google Scholar 

  18. Mikesch J., Steffen B., Berdel W., Serve H., Müller- Tidow C. 2007. The emerging role of Wnt signaling in the pathogenesis of acute myeloid leukemia. Leukemia. 21, 1638–1647.

    Article  CAS  PubMed  Google Scholar 

  19. Thompson M.D., Monga S.P. 2007. WNT/ß-catenin signaling in liver health and disease. Hepatology. 45, 1298–1305.

    Article  CAS  PubMed  Google Scholar 

  20. Turashvili G., Bouchal J., Burkadze G., Kolar Z. 2006. Wnt signaling pathway in mammary gland development and carcinogenesis. Pathobiology. 73 (5), 213–223.

    Article  CAS  PubMed  Google Scholar 

  21. Yamabuki T., Takano A., Hayama S., Ishikawa N., Kato T., Miyamoto M., Ito T., Ito H., Miyagi Y., Nakayama H. 2007. Dikkopf-1 as a novel serologic and prognostic biomarker for lung and esophageal carcinomas. Cancer Res. 67, 2517–2525.

    Article  CAS  PubMed  Google Scholar 

  22. Yardy G., Brewster S. 2005. Wnt signalling and prostate cancer. Prostate Cancer Prostatic Dis. 8 (2), 119–226.

    Article  CAS  PubMed  Google Scholar 

  23. Gomceli I., Bostanci E., Ozer I., Kemik A., Turhan N., Tez M., Kilic S., Demiriz B., Akoglu M. 2012. A novel screening biomarker in gastric cancer: Serum Dickkopf-1. Hepatogastroenterology. 59, 1661–1664.

    PubMed  Google Scholar 

  24. Forget M., Turcotte S., Beauseigle D., Godin-Ethier J., Pelletier S., Martin J., Tanguay S., Lapointe R. 2007. The Wnt pathway regulator DKK1 is preferentially expressed in hormone-resistant breast tumours and in some common cancer types. Br. J. Cancer. 96, 646–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Granchi D., Corrias M.V., Garaventa A., Baglìo S.R., Cangemi G., Carlini B., Paolucci P., Giunti A., Baldini N. 2011. Neuroblastoma and bone metastases: Clinical significance and prognostic value of Dickkopf 1 plasma levels. Bone. 48, 152–159.

    Article  CAS  PubMed  Google Scholar 

  26. Kaiser M., Mieth M., Liebisch P., Oberländer R., Rademacher J., Jakob C., Kleeberg L., Fleissner C., Braendle E., Peters M. 2008. Serum concentrations of DKK-1 correlate with the extent of bone disease in patients with multiple myeloma. Eur. J. Hematol. 80 (6), 490–494.

    Article  CAS  Google Scholar 

  27. Kemik O., Kemik A.S., Sumer A., Begenik H., Purisa S., Tuzun S., Kotan C. 2011. Relationship between clinicopathologic variables and serum and tissue levels of dickkopf-1 in patients with rectal cancer. J. Invest. Med. 59 (6), 947–950.

    Article  CAS  Google Scholar 

  28. Le Sheng S., Huang G., Yu B., Qin W.X. 2009. Clinical significance and prognostic value of serum Dickkopf-1 concentrations in patients with lung cancer. Clin. Chem. 55 (9), 1656–1664.

    Article  PubMed  Google Scholar 

  29. Lee H.S., Lee H.E., Park D.J., Kim H.-H., Kim W.H., Park K.U. 2012. Clinical significance of serum and tissue Dickkopf-1 levels in patients with gastric cancer. Clin. Chim. Acta. 413 (21), 1753–1760.

    Article  CAS  PubMed  Google Scholar 

  30. Lee N., Smolarz A., Olson S., David O., Reiser J., Kutner R., Daw N., Prockop D., Horwitz E., Gregory C. 2007. A potential role for Dkk-1 in the pathogenesis of osteosarcoma predicts novel diagnostic and treatment strategies. Br. J. Cancer. 97, 1552–1559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Politou M.C., Heath D.J., Rahemtulla A., Szydlo R., Anagnostopoulos A., Dimopoulos M.A., Croucher P.I., Terpos E. 2006. Serum concentrations of Dickkopf-1 protein are increased in patients with multiple myeloma and reduced after autologous stem cell transplantation. Int. J. Cancer. 119, 1728–1731.

    Article  CAS  PubMed  Google Scholar 

  32. Shen C.-H., Hsieh H.-Y., Wang Y.-H., Chen S.-Y., Tung C.-L., Wu J.-D., Lin C.-T., Chan M.W.-Y., Hsu C.-D., Chang D. 2010. High Dickkopf-1 expression is associated with poor prognosis in patients with advanced urothelial carcinoma. Exp. Therap. Medicine. 1, 893–898.

    CAS  Google Scholar 

  33. Shen Q., Fan J., Yang X.-R., Tan Y., Zhao W., Xu Y., Wang N., Niu Y., Wu Z., Zhou J. 2012. Serum DKK1 as a protein biomarker for the diagnosis of hepatocellular carcinoma: A large-scale, multicentre study. Lancet Oncol. 13, 817–826.

    Article  CAS  PubMed  Google Scholar 

  34. Tung E.K.K., Mak C.K.M., Fatima S., Lo R.C.L., Zhao H., Zhang C., Dai H., Poon R.T., Yuen M.F., Lai C.L., Li J.J., Luk J.M., Ng I.O. 2011. Clinicopathological and prognostic significance of serum and tissue Dickkopf-1 levels in human hepatocellular carcinoma. Liver Int. 31, 1494–1504.

    Article  CAS  PubMed  Google Scholar 

  35. Voorzanger-Rousselot N., Journe F., Doriath V., Body J.-J., Garnero P. 2009. Assessment of circulating Dickkopf-1 with a new two-site immunoassay in healthy subjects and women with breast cancer and bone metastases. Calcif. Tissue Int. 84, 348–354.

    Article  CAS  PubMed  Google Scholar 

  36. Fulciniti M., Tassone P., Hideshima T., Vallet S., Nanjappa P., Ettenberg S.A., Shen Z., Patel N., Tai Y.-T., Chauhan D. 2009. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood. 114, 371–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sato N., Yamabuki T., Takano A., Koinuma J., Aragaki M., Masuda K., Ishikawa N., Kohno N., Ito H., Miyamoto M. 2010. Wnt inhibitor Dickkopf-1 as a target for passive cancer immunotherapy. Cancer Res. 70, 5326–5336.

    Article  CAS  PubMed  Google Scholar 

  38. Boyden L.M., Mao J., Belsky J., Mitzner L., Farhi A., Mitnick M.A., Wu D., Insogna K., Lifton R.P. 2002. High bone density due to a mutation in LDL-receptorrelated protein 5. New Engl. J. Medicine. 346, 1513–1521.

    Article  CAS  Google Scholar 

  39. Patel M.S., Karsenty G. 2002. Regulation of bone formation and vision by LRP5. New Engl. J. Med. 346, 1572–1574.

    Article  CAS  PubMed  Google Scholar 

  40. Khalili S., Jahangiri A., Borna H., Ahmadi Zanoos K., Amani J. 2014. Computational vaccinology and epitope vaccine design by immunoinformatics. Acta Microbiol. Immunol. Hung. 61, 285–307.

    Article  CAS  PubMed  Google Scholar 

  41. Mihasan M. 2010. Basic protein structure prediction for the biologist: A review. Arch. Biol. Sci. 62, 857–871.

    Article  Google Scholar 

  42. Rahbar M.R., Rasooli I., Gargari S.L.M., Sandstrom G., Amani J., Fattahian Y., Jahangiri A., Jalali M. 2012. A potential in silico antibody–antigen based diagnostic test for precise identification of Acinetobacter baumannii. J. Theor. Biol. 294, 29–39.

    Article  CAS  PubMed  Google Scholar 

  43. Sefid F., Rasooli I., Jahangiri A. 2013. In silico determination and validation of baumannii acinetobactin utilization a structure and ligand binding site. BioMed Res. Int. 2013, 1–14.

    Article  Google Scholar 

  44. Mohammadpour H., Khalili S., Hashemi Z.S. 2015. Kremen is beyond a subsidiary co-receptor of Wnt signaling: An in silico validation: 2. Turk. J. Biol. 39, 501–511.

    Article  CAS  Google Scholar 

  45. Ahn V.E., Chu M.L.-H., Choi H.-J., Tran D., Abo A., Weis W.I. 2011. Structural basis of Wnt signaling inhibition by Dickkopf binding to LRP5/6. Dev. Cell. 21, 862–873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cheng Z., Biechele T., Wei Z., Morrone S., Moon R.T., Wang L., Xu W. 2011. Crystal structures of the extracellular domain of LRP6 and its complex with DKK1. Nat. Struct. Mol. Biol. 18, 1204–1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xie H., Vucetic S., Iakoucheva L.M., Oldfield C.J., Dunker A.K., Uversky V.N., Obradovic Z. 2007. Functional anthology of intrinsic disorder: 1. Biological processes and functions of proteins with long disordered regions. J. Proteome Res. 6, 1882–1898.

    CAS  PubMed  Google Scholar 

  48. Ferreiro D.U., Hegler J.A., Komives E.A., Wolynes P.G. 2007. Localizing frustration in native proteins and protein assemblies. Proc. Natl. Acad. Sci. U. S. A. 104, 19819–19824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bourhis E., Wang W., Tam C., Hwang J., Zhang Y., Spittler D., Huang O.W., Gong Y., Estevez A., Zilberleyb I., Rouge L., Chiu C., Wu Y., Costa M., Hannoush R.N., et al. 2011. Wnt antagonists bind through a short peptide to the first ß-propeller domain of LRP5/6. Structure. 19, 1433–1442.

    Article  CAS  PubMed  Google Scholar 

  50. Wang K., Zhang Y., Li X., Chen L., Wang H., Wu J., Zheng J., Wu D. 2008. Characterization of the Kremen-binding site on Dkk1 and elucidation of the role of Kremen in Dkk-mediated Wnt antagonism. J. Biol. Chem. 283, 23371–23375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Menezes M.E., Devine D.J., Shevde L.A., Samant R.S. 2012. Dickkopf1: A tumor suppressor or metastasis promoter? Int. J. Cancer. 130, 1477–1483.

    Article  CAS  PubMed  Google Scholar 

  52. Janda C.Y., Waghray D., Levin A.M., Thomas C., Garcia K.C. 2012. Structural basis of Wnt recognition by Frizzled. Science. 337 (6090), 59–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jessen J.R. 2009. Noncanonical Wnt signaling in tumor progression and metastasis. Zebrafish. 6, 21–28.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Rasaee.

Additional information

The article is published in the original.

Published in Russian in Molekulyarnaya Biologiya, 2017, Vol. 51, No. 1, pp. 180–192.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalili, S., Rasaee, M.J. & Bamdad, T. 3D structure of DKK1 indicates its involvement in both canonical and non-canonical Wnt pathways. Mol Biol 51, 155–166 (2017). https://doi.org/10.1134/S0026893317010095

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893317010095

Keywords

Navigation