Skip to main content
Log in

Recombinant small heat shock protein from Acholeplasma laidlawii increases the Escherichia coli viability in thermal stress by selective protein rescue

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

In both prokaryotes and eukaryotes, the survival at temperatures considerably exceeding the optimum is supported by intense synthesis of the so-called heat shock proteins (HSPs), which act to overcome the adverse effects of heat stress. Among mycoplasmas (class Mollicutes), which have significantly reduced genomes, only some members of the Acholeplasmataceae family possess small HSPs of the α-crystallin type. Overproduction of a recombinant HSP IbpA (Hsp20) from the free-living mycoplasma Acholeplasma laidlawii was shown to increase the resistance of Escherichia coli to short-term heat shock. It has been long assumed that IbpA prevents protein aggregation and precipitation thereby increasing viability of E. coli cells. Several potential target proteins interacting with IbpA under heat stress were identified, including biosynthetic enzymes, enzymes of energy metabolism, and components of the protein synthesis machinery. Statistical analysis of physicochemical properties indicated that IbpA interaction partners significantly differ in molecular weight, charge, and isoelectric point from other members of the E. coli proteome. Upon shortterm exposure to increased temperature, IbpA was found to preferentially interact with high-molecularweight proteins having a pI of about 5.1, significantly lower than the typical values of E. coli proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HSP:

heat shock protein

sHSP:

α-crystallin-type small heat shock protein

References

  1. Lindquist S. 1986. The heat-shock response. Annu. Rev. Biochem. 55, 1151–1191.

    Article  CAS  PubMed  Google Scholar 

  2. Borchsenius S.N., Budantseva E.V., Vonsky M.S. 1990. The heat shock proteins of Acholeplasma laidlawii. Zentralbl. Bakteriol. Suppl. 20, 657–658.

    CAS  Google Scholar 

  3. Vishnyakov I.E., Borchsenius S.N. 2013. Mycoplasma heat shock proteins and their genes. Microbiology (Moscow). 82 (6), 653–667.

    Article  CAS  Google Scholar 

  4. Borchsenius S.N., Vishnyakov I.E., Budantseva E.V., Vonsky M.S., Yakobs E., Lazarev V.N. 2008. a-Crystallin-type heat-shock protein from mycoplasma Acholeplasma laidlawii (Mollicutes). Cell Tissue Biol. (Moscow). 2 (4), 360–365.

    Article  Google Scholar 

  5. Vishnyakov I.E., Levitskii S.A., Manuvera V.A., Lazarev V.N., Ayala J.A., Ivanov V.A., Snigirevskaya E.S., Komissarchik Y.Y., Borchsenius S.N. 2012. The identification and characterization of IbpA, a novel alphacrystallin-type heat shock protein from mycoplasma. Cell Stress Chaperones. 17, 171–180.

    Article  CAS  PubMed  Google Scholar 

  6. Lazarev V.N., Levitskii S.A., Basovskii Y.I., Chukin M.M., Akopian T.A., Vereshchagin V.V., Kostrjukova E.S., Kovaleva G.Y., Kazanov M.D., Malko D.B., Vitreschak A.G., Sernova N.V., Gelfand M.S., Demina I.A., Serebryakova M.V., et al. 2011. Complete genome and proteome of Acholeplasma laidlawii. J. Bacteriol. 193, 4943–4953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chernov V.M., Mouzykantov A.A., Baranova N.B., Medvedeva E.S., Grygorieva T.Yu., Trushin M.V., Vishnyakov I.E., Sabantsev A.V., Borchsenius S.N., Chernova O.A. 2014. Extracellular membrane vesicles secreted by mycoplasma Acholeplasma laidlawii PG8 are enriched in virulence proteins. J. Proteomics. 110, 117–128.

    Article  CAS  PubMed  Google Scholar 

  8. Horwitz J. 1992. alpha-Crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. U. S. A. 89, 10449–10453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jakob U., Gaestel M., Engel K., Buchner J. 1993. Small heat shock proteins are molecular chaperones. J. Biol. Chem. 268, 1517–1520.

    CAS  PubMed  Google Scholar 

  10. Wong P., Houry W.A. 2004. Chaperone networks in bacteria: Analysis of protein homeostasis in minimal cells. J. Struct. Biol. 146, 79–89.

    Article  CAS  PubMed  Google Scholar 

  11. Horvath I., Glatz A., Varvasovszki V., Torok Z., Pali T., Balogh G., Kovacs E., Nidasdi L., Benki S., Joy F., Vigh L. 1998. Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: Identification of hsp17 as a ‘fluidity gene’. Proc. Natl. Acad. Sci. U. S. A. 95, 3513–3518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tsvetkova N.M., Horvath I., Torok Z., Wolkers W.F., Balogi Z., Shigapova N., Crowe L.M., Tablin F., Vierling E., Crowe J.H., Vigh L. 2002. Small heat-shock proteins regulate membrane lipid polymorphism. Proc. Natl. Acad. Sci. U. S. A. 99, 13504–13509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mounier N., Arrigo A.-P. 2002. Actin cytoskeleton and small heat shock proteins: How do they interact? Cell Stress Chaperones. 7, 167–176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Day R.M., Gupta J.S., MacRae T.H. 2003. A small heat shock/alpha-crystallin protein from encysted Artemia embryos suppresses tubulin denaturation. Cell Stress Chaperones. 8, 183–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Horvath I., Multhoff G., Sonnleitner A., Vigh L. 2008. Membrane-associated stress proteins: More than simply chaperones. Biochem. Biophys. Acta. 1778, 1653–1664.

    Article  CAS  PubMed  Google Scholar 

  16. Kocabiyik S. 2009. Essential structural and functional features of small heat shock proteins in molecular chaperoning process. Protein Pept. Lett. 16, 613–622.

    Article  CAS  PubMed  Google Scholar 

  17. Mymrikov E.V., Seit-Nebi A.S., Gusev N.B. 2011. Large potentials of small heat shock proteins. Physiol. Rev. 91, 1123–1159.

    Article  CAS  PubMed  Google Scholar 

  18. Basha E., O’Neill H., Vierling E. 2012. Small heat shock proteins and alpha-crystallins: Dynamic proteins with flexible functions. Trends Biochem. Sci. 37, 106–117.

    Article  CAS  PubMed  Google Scholar 

  19. Renaudin J., Breton M., Citti C. 2014. Molecular genetics tools for Mollicutes. In: Mollicutes: Molecular Biology and Pathogenesis. Eds. Browning G.F., Citti C. Norfolk, UK: Horizon Scientific Press, pp. 55–76.

    Google Scholar 

  20. Dybvig K., Cassell G.H. 1987. Transposition of grampositive transposon Tn916 in Acholeplasma laidlawii and Mycoplasma pulmonis. Science. 235, 1392–1394.

    Article  CAS  PubMed  Google Scholar 

  21. Dybvig K. 1989. Transformation of Acholeplasma laidlawii with streptococcal plasmids pVA868 and pVA920. Plasmid. 21, 155–160.

    Article  CAS  PubMed  Google Scholar 

  22. Sundström T.K., Wieslander A. 1990. Plasmid transformation and replica filter plating of Acholeplasma laidlawii. FEMS Microbiol. Lett. 60, 147–151.

    Article  PubMed  Google Scholar 

  23. Soto A., Allona I., Collada C., Guevara M.A., Casado R., Rodriguez-Cerezo E., Aragoncillo C., Gomez L. 1999. Heterologous expression of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiol. 120, 521–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mogk A., Deuerling E., Vorderwulbecke S., Vierling E., Bukau B. 2003. Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol. Microbiol. 50, 585–595.

    Article  CAS  PubMed  Google Scholar 

  25. Kayumov A., Heinrich A., Fedorova K., Ilinskaya O., Forchhammer K. 2011. Interaction of the general transcription factor TnrA with the PII-like protein GlnK and glutamine synthetase in Bacillus subtilis. FEBS J. 278, 1779–1789.

    Article  CAS  PubMed  Google Scholar 

  26. Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  27. Wan K.X., Vidavsky I., Gross M.L. 2002. Comparing similar spectra: From similarity index to spectral contrast angle. J. Am. Soc. Mass Spectrom. 13, 85–88.

    Article  CAS  PubMed  Google Scholar 

  28. Krasichkov A.S., Grigoriev E.B., Bogachev M.I., Nifontov E.M. 2015. Shape anomaly detection under strong measurement noise: An analytical approach to adaptive thresholding. Phys. Rev. E92, 042927.

    Google Scholar 

  29. Yeh C.H., Chang P.F.L., Yeh K.W., Lin W.C., Chen Y.M., Lin C.Y. 1997. Expression of a gene encoding a 16.9-kDa heat-shock protein, Oshsp16.9, in Escherichia coli enhances thermotolerance. Proc. Natl. Acad. Sci. U. S. A. 94, 10967–10972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Treweek T.M., Meehan S., Ecroyd H., Carver J.A. 2015. Small heat-shock proteins: Important players in regulating cellular proteostasis. Cell Mol. Life Sci. 72, 429–451.

    Article  CAS  PubMed  Google Scholar 

  31. Friedrich K.L., Giese K.C., Buan N.R., Vierling E. 2004. Interactions between small heat shock protein subunits and substrate in small heat shock protein-substrate complexes. J. Biol. Chem. 279, 1080–1089.

    Article  CAS  PubMed  Google Scholar 

  32. Haslbeck M., Weinkauf S., Buchner J. 2015. Regulation of the chaperone function of small Hsps. In: The Big Book on Small Heat Shock Proteins. Eds. Tanguay R.M., Hightower L.E. Switzerland: Springer, pp. 155–178.

  33. Lee G.J., Roseman A.M., Saibil H.R., Vierling E. 1997. A small heat shock protein stably binds heat denatured model substrates and can maintain a substrate in a folding competent state. EMBO J. 16, 659–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Delbecq S.P., Klevit R.E. 2013. One size does not fit all: The oligomeric states of aB crystallin. FEBS Lett. 587, 1073–1080.

    Article  CAS  PubMed  Google Scholar 

  35. Braun N., Zacharias M., Peschek J., Kastenmuller A., Zou J., Hanzlik M., Haslbeck M., Rappsilber J., Buchner J., Weinkauf S. 2011. Multiple molecular architectures of the eye lens chaperone aB-crystallin elucidated by a triple hybrid approach. Proc. Natl. Acad. Sci. U. S. A. 108, 20491–20496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Leroux M.R., Ma B.J., Batelier G., Melki R., Candido E.P.M. 1997. Unique structural features of a novel class of small heat shock proteins. J. Biol. Chem. 272, 12847–12853.

    Article  CAS  PubMed  Google Scholar 

  37. Dudkina E., Kayumov A., Ulyanova V., Ilinskaya O. 2014. New insight into secreted ribonuclease structure: Binase is a natural dimer. PLoS ONE. 9, e115818.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Heinrich A., Woyda K., Brauburger K., Meiss G., Detsch C., Stülke J., Forchhammer K. 2006. Interaction of the membrane-bound GlnK–AmtB complex with the master regulator of nitrogen metabolism TnrA in Bacillus subtilis. J. Biol. Chem. 281, 34909–34917.

    Article  CAS  PubMed  Google Scholar 

  39. Kayumov A., Heinrich A., Sharipova M., Iljinskaya O., Forchhammer K. 2008. Inactivation of the general transcription factor TnrA in Bacillus subtilis by proteolysis. Microbiology. 154, 2348–2355.

    Article  CAS  PubMed  Google Scholar 

  40. Bepperling A., Alte F., Kriehuber T., Braun N., Weinkauf S., Groll M., Haslbeck M., Buchner J. 2012. Alternative bacterial two-component small heat shock protein systems. Proc. Natl. Acad. Sci. U. S. A. 109, 20407–20412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sturm N., Jortzik E., Mailu B.M., Koncarevic S., Deponte M., Forchhammer K., Rahlfs S., Becker K. 2009. Identification of proteins targeted by the thioredoxin superfamily in Plasmodium falciparum. PLoS Pathog. 5, e1000383.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Reyes-Del Valle J., Chávez-Salinas S., Medina F., Del Angel R.M. 2005. Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J. Virol. 79, 4557–4567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Arifuzzaman M., Maeda M., Itoh A., Nishikata K., Takita C., Saito R., Ara T., Nakahigashi K., Huang H.C., Hirai A., Tsuzuki K., Nakamura S., Altaf- Ul-Amin M., Oshima T., Baba T., et al. 2006. Large-scale identification of protein-protein interaction of Escherichia coli K-12. Genome Res. 16, 686–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Vishnyakov.

Additional information

Original Russian Text © A.R. Kayumov, M.I. Bogachev, V.A. Manuvera, V.N. Lazarev, A.V. Sabantsev, T.O. Artamonova, S.N. Borchsenius, I.E. Vishnyakov, 2017, published in Molekulyarnaya Biologiya, 2017, Vol. 51, No. 00000, pp. 00000–00000.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayumov, A.R., Bogachev, M.I., Manuvera, V.A. et al. Recombinant small heat shock protein from Acholeplasma laidlawii increases the Escherichia coli viability in thermal stress by selective protein rescue. Mol Biol 51, 112–121 (2017). https://doi.org/10.1134/S0026893317010083

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893317010083

Keywords

Navigation