Skip to main content
Log in

Frequency, spectrum, and functional significance of TP53 mutations in patients with diffuse large B-cell lymphoma

  • Genomics. Transcriptomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

A comparative analysis of oncogene mutations shows that variations in their frequency, spectrum, and hot-spot locations depends on the type of tumor and the ethnic origin of the population studied. The current version of the IARC TP53 Mutation Database lacks information about the frequency and spectrum of TP53 mutations in patients with DLBCL in Russia. The aim of this study was to assess the frequency and functional significance of TP53 mutations in patients with DLBCL in Novosibirsk. The TP53 coding sequence and the adjacent intron regions were analyzed by direct sequencing in the tumor material from 74 patients with DLBCL. Mutations of the TP53 coding sequence were found in 18 (24.3%) patients. These data are consistent with the frequency of TP53 mutations observed in other studies. The spectrum of nucleotide substitutions found in DLBCL specimens corresponded to that described in the IARC TP53 Mutation Database. According to bioinformatic data and to reported experiments in vitro, most of the mutations detected result in the production of functionally inactive p53. Our results show that DLBCL progression is accompanied by the functional selection for mutations in TP53 exons 5–8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NHL:

non-Hodgkin lymphoma

DLBCL:

diffuse large B-cell lymphoma

References

  1. Hollstein M., Hainaut P. 2010. Massively regulated genes: The example of TP53. J. Pathol. 220 (2), 164–173.

    CAS  PubMed  Google Scholar 

  2. Hofstetter G., Berger A., Berger R., Zoric A., Braicu E.I., Reimer D., Fiegl H., Marth C., Zeimet A.G., Ulmer H., Moll U., Zeillinger R., Concin N. 2012. The N-terminally truncated p53 isoform 40p53 influences prognosis in mucinous ovarian cancer. Int. J. Gynecol. Cancer. 22 (3), 372–379.

    Article  PubMed  Google Scholar 

  3. Marcel V., Dichtel-Danjoy M.L., Sagne C., Hafsi H., Ma D., Ortiz-Cuaran S., Olivier M., Hall J., Mollereau B., Hainaut P., Bourdon J.C. 2011. Biological functions of p53 isoforms through evolution: Lessons from animal and cellular models. Cell Death Differ. 18 (12), 1815–1824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu-Monette Z.Y., Medeiros L.J, Li Y., Orlowski R.Z., Andreeff M., Bueso-Ramos C.E., Greiner T.C., McDonnell T.J., Young K.H. 2012. Dysfunction of the TP53 tumor suppressor gene in lymphoid malignancies. Blood. 119 (16), 3668–3683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Leroy B., Fournier J.L., Ishioka C., Monti P., Inga A., Fronza G., Soussi T. 2013. The TP53 website: An integrative resource centre for the TP53 mutation database and TP53 mutant analysis. Nucleic Acids Res. 41, D962–D969.

    Article  CAS  PubMed  Google Scholar 

  6. Peller S., Rotter V. 2003. TP53 in hematological cancer: low incidence of mutations with significant clinical relevance. Hum. Mutat. 21 (3), 277–284.

    Article  CAS  PubMed  Google Scholar 

  7. Cheung K.J., Horsman D.E., Gascoyne R.D. 2009. The significance of TP53 in lymphoid malignancies: Mutation prevalence, regulation, prognostic impact and potential as a therapeutic target. Br. J. Haematology. 146, 257–269.

    Article  CAS  Google Scholar 

  8. Sturm I., Bosanquet A.G., Hermann S., Guner D., Dorken B., Daniel P.T. 2003. Mutation of p53 and consecutive selective drug resistance in B-CLL occurs as a consequence of prior DNA-damaging chemotherapy. Cell Death Differ. 10 (4), 477–484.

    Article  CAS  PubMed  Google Scholar 

  9. Campo E., Swerdlow S.H., Harris N.L., Pileri S., Stein H., Jaffe E.S. 2011. The 2008 WHO classification of lymphoid neoplasms and beyond: Evolving concepts and practical applications. Blood. 117 (19), 5019–5032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Swerdlow S.H., Campo E., Harris N.L., Jaffe E.S., Pileri S.A., Stein H., Thiele J., Vardiman J.W. 2008. Diffuse Large B-Cell Lymphoma, Not Otherwise Specified. WHO Classification of Tumors of Haematopoetic and Lymphoid Tissues, 4th ed. Lyon.

    Google Scholar 

  11. Young K.H., Leroy K., Møller M.B., Colleoni G.W., Sánchez-Beato M., Kerbauy F.R., Haioun C., Eickhoff J.C., Young A.H., Gaulard P., Piris M.A., Oberley T.D., Rehrauer W.M., Kahl B.S., Malter J.S., et al. 2008. Structural profiles of TP53 gene mutations predict clinical outcome in diffuse large B-cell lymphoma: An international collaborative study. Blood. 112, 3088–3098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gisselbrecht C., Glass B., Mounier N., Singh Gill D., Linch D.C., Trneny M., Bosly A., Ketterer N., Shpilberg O., Hagberg H., Ma D., Brière J., Moskowitz C.H., Schmitz N. 2010. Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era. J. Clin. Oncol. 28 (27), 4184–4190.

    Article  PubMed  PubMed Central  Google Scholar 

  13. http://p53.fr.

  14. Edlund K., Larsson O., Ameur A., Bunikis I., Gyllensten U., Leroy B., Sundström M., Micke P., Botling J., Soussi T. 2012. Data-driven unbiased curation of the TP53 tumor suppressor gene mutation database and validation by ultradeep sequencing of human tumors. Proc. Natl. Acad. Sci. U. S. A. 109 (24), 9551–9556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Frebourg T., Barbier N., Kassel J., Ng Y.S., Romero P., Friend S.H. 1992. A functional screen for germ line p53 mutations based on transcriptional activation. Cancer Res. 52, 6976–6978.

    CAS  PubMed  Google Scholar 

  16. Tennis M., Krishnan S., Bonner M., Ambrosone C.B., Vena J.E., Moysich K., Swede H., McCann S., Hall P., Shields P.G., Freudenheim J.L. 2006. Method of p53 mutation analysis in breast tumors by a DNA microarray. Cancer Epidemiol. Biomarkers Prev. 15 (1), 80–85.

    Article  CAS  PubMed  Google Scholar 

  17. Petitjean A., Mathe E., Kato S., Ishioka C., Tavtigian S.V., Hainaut P., Olivier M. 2007. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: Lessons from recent developments in the IARC TP53 database. Hum. Mutat. 28, 622–629.

    Article  CAS  PubMed  Google Scholar 

  18. Adzhubei I., Jordan D.M., Sunyaev S.R. 2013. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet., Ch. 7: Unit7.20.

  19. Dekairelle A.F., Tombal B., Cosyns J.P., Gala J.L. 2005. Assessment of the transcriptional activity of p53 improves the prediction of recurrence in superficial transitional cell carcinoma of the bladder. Clin. Cancer Res. 11 (13), 4724–4732.

    Article  CAS  PubMed  Google Scholar 

  20. Monti P., Campomenosi P., Ciribilli Y., Iannone R., Inga A., Abbondandolo A., Resnick M.A., Fronza G. 2002. Tumour p53 mutations exhibit promoter selective dominance over wild type p53. Oncogene. 21, 1641–1648.

    Article  CAS  PubMed  Google Scholar 

  21. Dearth L.R., Qian H., Wang T., Baroni T.E., Zeng J., Chen S.W., Yi S.Y., Brachmann R.K. 2007. Inactive full-leng the p53 mutants lacking dominant wild-type p53 inhibition highlight loss of heterozygosity as an important aspect of p53 status in human cancers. Carcinogenesis. 28 (2), 289–298.

    Article  CAS  PubMed  Google Scholar 

  22. Campomenosi P., Monti P., Aprile A., Abbondandolo A., Frebourg T., Gold B., Crook T., Inga A., Resnick M.A., Iggo R., Fronza G. 2001. P53 mutants can often transactivate promoters containin gap21 but not Bax or PIG3 responsive elements. Oncogene. 20, 3573–3579.

    Article  CAS  PubMed  Google Scholar 

  23. Smardova J. 1999. FASAY: A simple functional assay in yeast for identification of p53 mutation in tumors. Neoplasm. 46 (2), 80–88.

    CAS  Google Scholar 

  24. Fogh J., Fogh J.M., Orfeo T. 1977. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J. Natl. Cancer Inst. 59 (1), 221–226.

    Article  CAS  PubMed  Google Scholar 

  25. Kumar P., Henikoff S., Ng P.C. 2009. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4 (7), 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  26. Shiraishi K., Kato S., Han S.Y., Liu W., Otsuka K., Sakayori M., Ishida T., Takeda M., Kanamaru R., Ohuchi N., Ishioka C. 2004. Isolation of temperaturesensitive p53 mutations from a comprehensive missense mutation library. J. Biol. Chem. 279 (1), 348–355.

    Article  CAS  PubMed  Google Scholar 

  27. Kakudo Y., Shibata H., Otsuka K., Kato S., Ishioka C. 2005. Lack of correlation between p53-dependent transcriptional activity and the ability to induce apoptosis among 179 mutant p53s. Cancer Res. 65 (6), 2108–2114.

    Article  CAS  PubMed  Google Scholar 

  28. Monti P., Campomenosi P., Ciribilli Y., Iannone R., Aprile A., Inga A., Tada M., Menichini P., Abbondandolo A., Fronza G. 2003. Characterization of the p53 mutants ability to inhibit p73b transactivation using a yeast-based functional assay. Oncogene. 22, 5252–5260.

    Article  CAS  PubMed  Google Scholar 

  29. Dearth L.R., Qian H., Wang T., Baroni T.E., Zeng J., Chen S.W., Yi S.Y., Brachmann R.K. 2007. Inactive full-length p53 mutants lacking dominant wild-type p53 inhibition highlight loss of heterozygosity as an important aspect of p53 status in human cancers. Carcinogenesis. 28 (2), 289–298.

    Article  CAS  PubMed  Google Scholar 

  30. Miyaki M., Iijima T., Ohue M., Kita Y., Hishima T., Kuroki T., Iwama T., Mori T. 2003. A novel case with germline p53 gene mutation having concurrent multiple primary colon tumours. Gut. 52 (2), 304–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Leroy B., Fournier J.L., Ishioka C., Monti P., Inga A., Fronza G., Soussi T. 2013. The TP53 website: An integrative resource centre for the TP53 mutation database and TP53 mutant analysis. Nucleic Acids Res. 41 (Database issue), D962–D969.

    Article  CAS  PubMed  Google Scholar 

  32. http://www.hgmd.cf.ac.uk/ac/.

  33. Lehman T.A., Haffty B.G., Carbone C.J., Bishop L.R., Gumbs A.A., Krishnan S., Shields P.G., Modali R., Turner B.C. 2000. Elevated frequency and functional activity of a specific germ-line p53 intron mutation in familial breast cancer. Cancer Res. 60 (4), 1062–1069.

    CAS  PubMed  Google Scholar 

  34. Zhang Y., Hu Y., Fang J.Y., Xu J. 2016. Gain-of-function miRNA signature by mutant p53 associates with poor cancer outcome. Oncotarget [Epub ahead of print]. doi 10.18632/oncotarget.7090

    Google Scholar 

  35. Slingerland J.M., Jenkins J.R., Benchimol S. 1993. The transforming and suppressor functions of p53 alleles: Effects of mutations that disrupt phosphorylation, oligomerization and nuclear translocation. EMBO J. 12 (3), 1029–1037.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Amin N.A., Malek S.N. 2016. Gene mutations in chronic lymphocytic leukemia. Semin. Oncol. 43 (2), 215–221.

    Article  CAS  PubMed  Google Scholar 

  37. Kandioler D., Mittlböck M., Kappel S., Puhalla H., Herbst F., Langner C., Wolf B., Tschmelitsch J., Schippinger W., Steger G., Hofbauer F., Samonigg H., Gnant M., Teleky B., Kührer I. 2015. TP53 mutational status and prediction of benefit from adjuvant 5-fluorouracil in stage iii colon cancer patients. EBioMedicine. 2 (8), 823–828.

    Article  Google Scholar 

  38. Young K.H., Weisenburger D.D., Dave B.J., Smith L., Sanger W., Iqbal J., Campo E., Delabie J., Gascoyne R.D., Ott G., Rimsza L., Muller-Hermelink H.K., Jaffe E.S., Rosenwald A., Staudt L.M., et al. 2007. Mutations in the DNA-binding codons of TP53, which are associated with decreased expression of TRAIL receptor-2, predict for poor survival in diffuse large B-cell lymphoma. Blood. 110, 4396–4405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stefancikova L., Moulis M., Fabian P., Vasova I., Zedek F., Ravcukova B., Muzik J., Kuglik P., Vranova V., Falkova I., Hrabalkova R., Smardova J. 2011. Prognostic impact of p53 aberrations for R-CHOP-treated patients with diffuse large B-cell lymphoma. Int. J. Oncol. 39, 1413–1420.

    CAS  PubMed  Google Scholar 

  40. Zenz T., Eichhorst B., Busch R., Denzel T., Habe S., Winkler D., Buhler A., Edelmann J., Bergmann M., Hopfinger G., Hensel M., Hallek M., Dohner H., Stilgenbauer S. 2010. TP53 mutation and survival in chronic lymphocytic leukemia. J. Clin. Oncol. 28, 4473–4479.

    Article  PubMed  Google Scholar 

  41. Barnas C., Martel-Planche G., Furukawa Y., Hollstein M., Montesano R., Hainaut P. 1997. Inactivation of the p53 protein in cell lines derived from human esophageal cancers. Int. J. Cancer. 71 (1), 79–87.

    Article  CAS  PubMed  Google Scholar 

  42. Glick B.R., Pasternak J.J. Molecular Biotechnology: Principles and Applications of Recombinant DNA. Washington, DC: ASM Press, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Voropaeva.

Additional information

Original Russian Text © E.N. Voropaeva, T.I. Pospelova, M.I. Voevoda, V.N. Maksimov, 2017, published in Molekulyarnaya Biologiya, 2017, Vol. 51, No. 1, pp. 64–72.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voropaeva, E.N., Pospelova, T.I., Voevoda, M.I. et al. Frequency, spectrum, and functional significance of TP53 mutations in patients with diffuse large B-cell lymphoma. Mol Biol 51, 53–60 (2017). https://doi.org/10.1134/S0026893316060224

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893316060224

Keywords

Navigation