Skip to main content
Log in

Interactions of the TREX-2 complex with mRNP particle of β-tubulin 56D gene

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

mRNA transport from the nucleus to the cytoplasm is an essential step of eukaryotic gene expression. A pre-mRNA molecule undergoes modification, such as 5’-capping, splicing, and 3’-end processing, in the nucleus. The molecule being modified interacts with a large number of proteins and, thus, mRNP particles are formed. The binding of factors involved in nuclear export also occurs during transcription and mRNA processing. We have shown that the functioning of TREX-2, an mRNA export complex, is restricted to the nucleus. We used the method of RNA coprecipitation that enables the selective extraction of RNA-protein complexes from samples to show that the transcription elongation complex TREX interacts with mRNA of the β-tubulin 56D gene over the entire length of the molecule. The capping protein Cbp80 reacted both with the cap structure and with a specific part of the coding mRNA of the β-tubulin 56D gene. The TREX-2 complex that mediates mRNA export from the nucleus to the cytoplasm is bound to the same part of the coding sequence. Thus, we identified a common binding site for all of the complexes under investigation on the mRNA of β-tubulin 56D. Co-immunoprecipitation reactions performed with S2 cell extracts revealed interactions between the components of complexes involved in transcription elongation, maturation, and export of mRNA. The model of molecular folding for the mRNP particle involving the mRNA of β-tubulin 56D has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perales R., Bentley D. 2009. “Cotranscriptionality”: The transcription elongation complex as a nexus for nuclear transactions. Mol. Cell. 36, 178–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bataille A.R., Jeronimo C., Jacques P.E., Laramee L., Fortin M.E., Forest A., Bergeron M., Hanes S.D., Robert F. 2012. A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. Mol. Cell. 45, 158–170.

    Article  CAS  PubMed  Google Scholar 

  3. Ohno M. 2012. Size matters in RNA export. RNA Biol. 9, 1413–1417.

    Article  CAS  PubMed  Google Scholar 

  4. Meinel D.M., Burkert-Kautzsch C., Kieser A., O’Duibhir E., Siebert M., Mayer A., Cramer P., Soding J., Holstege F.C., Strasser K. 2013. Recruitment of TREX to the transcription machinery by its direct binding to the phospho-CTD of RNA polymerase II. PLoS Genet. 9, e1003914.

    Article  Google Scholar 

  5. Delaleau M., Borden K.L. 2015. Multiple export mechanisms for mRNAs. Cells. 4, 452–473.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Long J.C., Caceres J.F. 2009. The SR protein family of splicing factors: Master regulators of gene expression. Biochem. J. 417, 15–27.

    Article  CAS  PubMed  Google Scholar 

  7. Zhong X.Y., Wang P., Han J., Rosenfeld M.G., Fu X.D. 2009. SR proteins in vertical integration of gene expression from transcription to RNA processing to translation. Mol. Cell. 35, 1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Iglesias N., Tutucci E., Gwizdek C., Vinciguerra P., Von Dach E., Corbett A.H., Dargemont C., Stutz F. 2010. Ubiquitin-mediated mRNP dynamics and surveillance prior to budding yeast mRNA export. Genes Dev. 24, 1927–1938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Strasser K., Hurt E. 2000. Yra1p, a conserved nuclear RNA-binding protein, interacts directly with Mex67p and is required for mRNA export. EMBO J. 19, 410–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rodrigues J.P., Rode M., Gatfield D., Blencowe B.J., Carmo-Fonseca M., Izaurralde E. 2001. REF proteins mediate the export of spliced and unspliced mRNAs from the nucleus. Proc. Natl. Acad. Sci. U. S. A. 98, 1030–1035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hurt E., Luo M.J., Rother S., Reed R., Strasser K. 2004. Cotranscriptional recruitment of the serine-arginine-rich (SR)-like proteins Gbp2 and Hrb1 to nascent mRNA via the TREX complex. Proc. Natl. Acad. Sci. U. S. A. 101, 1858–1862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gilbert W., Guthrie C. 2004. The Glc7p nuclear phosphatase promotes mRNA export by facilitating association of Mex67p with mRNA. Mol. Cell. 13, 201–212.

    Article  CAS  PubMed  Google Scholar 

  13. Batisse J., Batisse C., Budd A., Bottcher B., Hurt E. 2009. Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J. Biol. Chem. 284, 34911–34917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hackmann A., Wu H., Schneider U.M., Meyer K., Jung K., Krebber H. 2014. Quality control of spliced mRNAs requires the shuttling SR proteins Gbp2 and Hrb1. Nat. Commun. 5, 3123.

    Article  PubMed  Google Scholar 

  15. Matzat L.H., Berberoglu S., Levesque L. 2008. Formation of a Tap/NXF1 homotypic complex is mediated through the amino-terminal domain of Tap and enhances interaction with nucleoporins. Mol. Biol. Cell. 19, 327–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bachi A., Braun I.C., Rodrigues J.P., Pante N., Ribbeck K., Von Kobbe C., Kutay U., Wilm M., Gorlich D., Carmo-Fonseca M., Izaurralde E. 2000. The C-terminal domain of TAP interacts with the nuclear pore complex and promotes export of specific CTE-bearing RNA substrates. RNA. 6, 136–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Braun I.C., Herold A., Rode M., Izaurralde E. 2002. Nuclear export of mRNA by TAP/NXF1 requires two nucleoporin-binding sites but not p15. Mol. Cell. Biol. 22, 5405–5418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rodriguez-Navarro S., Fischer T., Luo M.J., Antunez O., Brettschneider S., Lechner J., Perez-Ortin J.E., Reed R., Hurt E. 2004. Sus1, a functional component of the SAGA histone acetylase complex and the nuclear poreassociated mRNA export machinery. Cell. 116, 75–86.

    Article  CAS  PubMed  Google Scholar 

  19. Ellisdon A.M., Dimitrova L., Hurt E., Stewart M. 2012. Structural basis for the assembly and nucleic acid binding of the TREX-2 transcription-export complex. Nat. Struct. Mol. Biol. 19, 328–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jani D., Lutz S., Marshall N.J., Fischer T., Kohler A., Ellisdon A.M., Hurt E., Stewart M. 2009. Sus1, Cdc31, and the Sac3 CID region form a conserved interaction platform that promotes nuclear pore association and mRNA export. Mol. Cell. 33, 727–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dimitrova L., Valkov E., Aibara S., Flemming D., Mclaughlin S.H., Hurt E., Stewart M. 2015. Structural characterization of the Chaetomium thermophilum TREX-2 complex and its interaction with the mRNA nuclear export factor Mex67:Mtr2. Structure. 23, 1246–1257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jani D., Valkov E., Stewart M. 2014. Structural basis for binding the TREX2 complex to nuclear pores, GAL1 localisation and mRNA export. Nucleic Acids Res. 42, 6686–6697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pascual-Garcia P., Govind C.K., Queralt E., Cuenca- Bono B., Llopis A., Chavez S., Hinnebusch A.G., Rodriguez-Navarro S. 2008. Sus1 is recruited to coding regions and functions during transcription elongation in association with SAGA and TREX2. Genes Dev. 22, 2811–2822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kurshakova M.M., Krasnov A.N., Kopytova D.V., Shidlovskii Y.V., Nikolenko J.V., Nabirochkina E.N., Spehner D., Schultz P., Tora L., Georgieva S.G. 2007. SAGA and a novel Drosophila export complex anchor efficient transcription and mRNA export to NPC. EMBO J. 26, 4956–4965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Garcia-Oliver E., Garcia-Molinero V., Rodriguez-Navarro S. 2012. mRNA export and gene expression: The SAGA–TREX-2 connection. Biochim. Biophys. Acta. 1819, 555–565.

    Article  CAS  PubMed  Google Scholar 

  26. Jani D., Lutz S., Hurt E., Laskey R.A., Stewart M., Wickramasinghe V.O. 2012. Functional and structural characterization of the mammalian TREX-2 complex that links transcription with nuclear messenger RNA export. Nucleic Acids Res. 40, 4562–4573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wickramasinghe V.O., Mcmurtrie P.I., Mills A.D., Takei Y., Penrhyn-Lowe S., Amagase Y., Main S., Marr J., Stewart M., Laskey R.A. 2010. mRNA export from mammalian cell nuclei is dependent on GANP. Curr. Biol. 20, 25–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wickramasinghe V.O., Stewart M., Laskey R.A. 2010. GANP enhances the efficiency of mRNA nuclear export in mammalian cells. Nucleus. 1, 393–396.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schneider M., Hellerschmied D., Schubert T., Amlacher S., Vinayachandran V., Reja R., Pugh B.F., Clausen T., Kohler A. 2015. The nuclear pore-associated TREX-2 complex employs mediator to regulate gene expression. Cell. 162, 1016–1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Santos-Pereira J.M., Garcia-Rubio M.L., Gonzalez-Aguilera C., Luna R., Aguilera A. 2014. A genome-wide function of THSC/TREX-2 at active genes prevents transcription-replication collisions. Nucleic Acids Res. 42, 12000–12014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kopytova D.V., Orlova A.V., Krasnov A.N., Gurskiy D.Y., Nikolenko J.V., Nabirochkina E.N., Shidlovskii Y.V., Georgieva S.G. 2010. Multifunctional factor ENY2 is associated with the THO complex and promotes its recruitment onto nascent mRNA. Genes Dev. 24, 86–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gurskiy D., Orlova A., Vorobyeva N., Nabirochkina E., Krasnov A., Shidlovskii Y., Georgieva S., Kopytova D. 2012. The DUBm subunit Sgf11 is required for mRNA export and interacts with Cbp80 in Drosophila. Nucleic Acids Res. 40, 10689–10700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Georgieva S., Nabirochkina E., Dilworth F.J., Eickhoff H., Becker P., Tora L., Georgiev P., Soldatov A. 2001. The novel transcription factor e(y)2 interacts with TAF(II)40 and potentiates transcription activation on chromatin templates. Mol. Cell Biol. 21, 5223–5231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vorobyeva N.E., Soshnikova N.V., Nikolenko J.V., Kuzmina J.L., Nabirochkina E.N., Georgieva S.G., Shidlovskii Y.V. 2009. Transcription coactivator SAYP combines chromatin remodeler Brahma and transcription initiation factor TFIID into a single supercomplex. Proc. Natl. Acad. Sci. U. S. A. 106, 11049–11054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kopytova D., Popova V., Kurshakova M., Shidlovskii Y., Nabirochkina E., Brechalov A., Georgiev G., Georgieva S. 2016. ORC interacts with THSC/TREX-2 and its subunits promote Nxf1 association with mRNP and mRNA export in Drosophila. Nucleic Acids Res. Mar 25. pii: gkw192. [Epub ahead of print]

    Google Scholar 

  36. Popova V.V., Kurshakova M.M., Kopytova D.V. 2015. Methods to study the RNA–protein interactions. Mol. Biol. (Moscow). 49 (3): 418–426.

    Article  CAS  Google Scholar 

  37. Singh G., Pratt G., Yeo G.W., Moore M.J. 2015. The clothes make the mRNA: Past and present trends in mRNP fashion. Annu. Rev. Biochem. 84, 325–354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Katahira J. 2015. Nuclear export of messenger RNA. Genes (Basel). 6, 163–184.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Kopytova.

Additional information

Original Russian Text © V.V. Popova, A.A. Glukhova, S.G. Georgieva, D.V. Kopytova, 2016, published in Molekulyarnaya Biologiya, 2016, Vol. 50, No. 6, pp. 1030–1038

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, V.V., Glukhova, A.A., Georgieva, S.G. et al. Interactions of the TREX-2 complex with mRNP particle of β-tubulin 56D gene. Mol Biol 50, 909–917 (2016). https://doi.org/10.1134/S0026893316060157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893316060157

Keywords

Navigation