Abstract
Human genetic markers linked with the X chromosome (X-linked) are used in the field of population and medical genetics, as well as for DNA identification of individuals in forensic science and forensic medicine. We proposed an XSNPid panel that consists of 66 unlinked single nucleotide X chromosome markers and developed a protocol for their multiplex genotyping using multilocus PCR and MALDI-TOF mass spectrometry. The XSNPid panel is genotyped within two multiplexes (36 and 30 markers). The developed protocol provides an efficient genotype reading; the fraction of determined genotypes is 98.29%. The high level of gene diversity (0.461) for the X-linked SNPs included in the panel is characteristic of the Russian population. A total of 63 out of 66 markers that provide a high efficiency of genotyping and independent inheritance are suitable for DNA identification purposes. The XSNPid panel is characterized by a very high discriminating ability when studying the Russian population. The probability of genotype coincidence in two unrelated individuals is 9 × 10–27 for women and 2 × 10–18 for men. Also, the XSNPid panel has a greater multiplex capacity in addition to a higher discriminating ability compared to the other closest analogues of the X chromosome SNP sets, which makes it more cost effective and less time consuming. The XSNPid panel is a convenient tool, not only for individual DNA identification, but also for population genetic studies.
This is a preview of subscription content,
to check access.Abbreviations
- MALDI-TOF:
-
matrix assisted laser desorption/ionisation-time of flight
- SNP:
-
single nucleotide polymorphism
References
Stepanov V.A. 2002). Etnogenomika naseleniya Sibiri i Srednei Azii (Ethnogenomics of the Population of Siberia and Central Asia). Tomsk: Pechatnaya Manufaktura.
Stepanov V.A., Khar’ kov V.N., Puzyrev V.P. 2006. The evolution and phylogeography of human Y-chromosome lineages. Inf. Vestn. Vavilovskogo O-va. Genet. Sel. 10, 57–73.
Khitrinskaya I.Yu., Khar’kov V.N., Stepanov V.A. 2010. Genetic diversity of the chromosome X in aboriginal Siberian populations: The structure of linkage disequilibrium and haplotype phylogeography of the ZFX locus. Mol. Biol. (Moscow). 44 (5), 709–719.
Vagaitseva K.V., Kharkov V.N., Cherpinskaya K.V., Khitrinskaya I.Yu., Stepanov V.A. 2015. Genetic variability of X-linked STR markers in Siberian populations. Mol. Biol. (Moscow). 49 (2), 267–274.
Dobyns W.B., Filauro A., Tomson B., Chan A.S., Ho A.W., Ting N.T., Oosterwijk J.C., Ober C. 2004. Inheritance of most X-linked traits is not dominant or recessive, just X-linked. Am. J. Med. Genet. 129, 136–143.
Burdett T., Hall P.N., Hasting E., Hindorff L.A., Junkins H.A., Klemm A.K., MacArthur J., Manolio T.A., Morales J., Parkinson H., Welter D. 2015. A Catalog of Published Genome-Wide Association Studies. wwwgenomegov/gwastudies. Accessed July 18, 2015.
Szibor R. 2007. X-chromosomal markers: Past, present and future. Forensic Sci. Int. Genet. 1, 93–99.
Lancia M., Severini S., Coletti A., Margiotta G., Dobosz M., Carnevali E. 2011. Using X-chromosomal markers in rape investigation. Forensic Sci. Int. Genet. 3, e55–e56
Stepanov V.A., Balanovskii O.P., Melnikov A.V., Kharkov V.N., Tyazhelova T.V., Akhmetova V.L., Zhukova O.V., Shneider Yu.V., Shil’nikova N.N., Borinskaya S.A., Marusin A.V., Spiridonova M.G., Simonova K.V., Khitrinskaya I.Yu., Radzhabov M.O., et al. 2011. Characteristics of populations of the Russian Federation over the panel of fifteen loci used for DNA identification and in forensic medical examination. Acta Naturae. 3, 59–71.
Stepanov V.A., Melnikov A.V., Lash-Zavada A.Y., Kharkov V.N., Borinskaya S.A, Tyazhelova T.V., Zhukova O.V., Schneider Y.V., Shil’nikova I.N., Puzyrev V.P., Rybakova A.A., Yankovsky N.K. 2010. Genetic variability of 15 autosomal STR loci in Russian populations. Legal Medicine. 12, 256–258.
Shorokhova D.A., Stepanov V.A., Udovenko Yu.D., Hovoselov V.P., Puzyrev V.P. 2005. Genetic variation and discriminating power of four DNA microsatellites in the Russian population. Mol. Biol. (Moscow). 39 (6), 845–850.
Costa A., Morais P., Vieira da Silva C., Matos S., Marques dos Santos R., Espinheira R, Costa Santos J., Amorim A. 2014. X-chromosome STR markers data in a Cabo Verde immigrant population of Lisboa. Mol. Biol. Rep. 41, 2559–2569.
Gill P., Ivanov P.L., Kimpton C., Piercy R., Benson N., Tully G., Evett I., Hagelberg E., Sullivan K. 1994. Identification of the remains of the Romanov family by the DNA analysis. Nat. Genet. 6, 130–135.
Gill P., Werrett D.J., Budowle B., Guerrieri, R. 2004. An assessment of whether SNPs will replace STRs in national DNA databases: Joint considerations of the DNA working group of the European Network of Forensic Science Institutes (ENFSI) and the Scientific Working Group on DNA Analysis Methods (SWGDAM). Sci. Justice. 44, 51–53.
Krawczak M. 1999. Informativity assessment for biallelic single nucleotide polymorphisms. Electrophoresis. 20, 1676–1681.
Li C., Zhang S., Zhao S., Liu Y., Lin Y. 2010. Analysis of 14 highly informative SNP markers on X chromosome by TaqMan SNP genotypoing assay. Forensic Sci. Int.: Genetics. 4, e145–e148.
Tomas C., Sanchez J.J., Castro J.A., Børsting C., Morling N. 2010. Forensic usefulness of a 25 X-chromosome single-nuleotide polymorphism set. Transfusion. 50, 2258–2265.
Pereira V., Tomas C., Amorim A., Morling N., Gusmao L., Prata M.J. 2011. Study of 25 X-chromosome SNPs in Portugese. Forensic Sci. Int.: Genetics. 5, 336–338.
Berglund E.C., Kiialainen A., Syvänen A.-C. 2011. Next-generation sequencing technologies and applications for human genetic history and forensics. Invest. Genet. 2, 23.
Yaran Yang, Bingbing Xie, Jiangwei Yan. 2014. Application of next-generation sequencing technology in forensic science. Genom. Proteom. Bioinform. 12, 190–197.
Churchill J.D., Chang J., Ge J., Rajagopalan S.C. Wootton C.W. 2015. Blind study evaluation illustrates utility of the Ion PGM system for use in human identity DNA typing. Croat. Med. J. 56, 218–229.
Stepanov V.A., Trifonova E.A. 2013. Multiplex SNP genotyping by MALDI–TOF mass spectrometry: Frequencies of 56 immune response gene SNPs in human populations. Mol. Biol. (Moscow). 47, 852–862.
Electrospray and MALDI Mass Spectrometry: Fundamentals, Instrumentation, Practicalities, and Biological Applications, 2nd ed. Ed. Cole R.B. Wiley, 2012.
http://wwwncbinlmnihgov/projects/SNP/
http://hapmapncbinlmnihgov/
Guo S., Thompson E. 1992. Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics. 48, 361–372.
Trifonova E.A., Eremina E.R., Urnov F.D., Stepanov V.A. 2012. Genetic diversity and structure of the MTHFR gene linkage disequilibrium in populations of northern Eurasia. Acta Naturae. 4, 80–96.
Stepanov V.A., Kharkov V.N., Trifonova E.A., Marusin A.V. 2014). Metody statisticheskogo analiza v populyatsionnoi i evolyutsionnoi genetike cheloveka. Uchebno-metodicheskoe posobie (Methods of Statistical Analysis in Human Population and Evolutionary Genetics: A Manual), Ser. Nasledstvennost’ i zdorov’e (Heredity and Health Book Series), vol. 12, Tomsk: Pechatnaya Manufaktura.
Slatkin M. 1994. Linkage disequilibrium in growing and stable populations. Genetics 137, 331–336.
Excoffier L., Lischer H. 2011). Arlequin v. 3.5: An Integrated Software Package for Population Genetics Data Analysis. Swiss Institute of Bioinformatics.
Validation Guidelines for DNA Analysis Methods, Scientific Working Group on DNA Analysis Methods, 2012.
Promega. 2013). Internal Validation Guide of Autosomal STR Systems for Forensic Laboratories: Reference Manual.
https://worldwidepromegacom/products/geneticidentity/ str-analysis-for-forensic-and-paternity-testing/ powerplex-fusion-str-kits/
Sanchez J.J., Phillips C., Borsting C., Balogh K., Bogus M., Fondevila M., Harrison C.D., Musgrave-Brown E., Salas A., Syndercombe-Court D., Schneider P.M., Carracedo A., Morling N. 2006. A multiplex assay with 52 single nucleotide polymorphisms for human identification. Electrophoresis. 27, 1713–1724.
Philips C., Fang R., Ballard D. Fondevila M., Harrison C., Hyland F., Musgrave-Brown E., Proff C., Ramos-Luis E., Sobrino B., Carracedo A., Furtado M.R., Syndercombe- Court D., Schneider P.M.; SNPforID Consortium. 2007. Evaluation of the Genplex SNP typing system and a 49plex forensic marker panel. Forensic Sci. Int. Genetics. 1, 180–185.
Pakstis A.J., Speed W.C., Fang R. Hyland F.C.L, Furtado M.R, Kidd J.R, Kidd K.K. 2010. SNPs for a universal individual identification panel. Hum. Genet. 127, 315–324.
Kidd K.K. 2011). Population Genetics of SNPs for Forensic Purposes (Updated). NIJ Final Report.
Musgrave-Brown E., Ballard D., Balogh K., Bender K., Berger B., Bogus M., Børsting C., Brion M., Fondevila M., Harrison C., Oguzturun C., Parson W., Phillips C., Proff C., Ramos-Luis E., et al. 2007. Forensic validation of the SNPforID 52plex assay. Forensic Sci. Int. Genet. 1, 186–90.
Agena Bioscience. 2014). iPLEX Pro Sample ID Brochure.
Johansen P., Andersen J.D., Borsting C., Morling N. 2013. Evaluation of the iPLEX Sample ID Plus Panel designed for the Sequenom MassARRAY system. A SNP typing assay developed for human identification and sample tracking based on the SNPforID panel. Forensic Sci. Int. Genet. 7, 482–487.
Life Technologies. 2014). HID-Ion AmpliSeq Identity Panel Data Sheet. 2 P.
Illumina. 2014). ForenSeq DNA Signature Prep Kit Data Sheet.
Li Y., Liu Y., Lin Y. 2015. Typing of 67 SNP loci on X chromosome by PCR and MALDI-TOF MS.Res. Genet. 2015, ID 374688.
Promega. 2013). PowerPlex® Fusion Systems Data Sheet.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © V.A. Stepanov, K.V. Vagaitseva, V.N. Kharkov, A.A. Cherednichenko, A.V. Bocharova, 2016, published in Molekulyarnaya Biologiya, 2016, Vol. 50, No. 3, pp. 445–456.
Rights and permissions
About this article
Cite this article
Stepanov, V.A., Vagaitseva, K.V., Kharkov, V.N. et al. Panel of X-linked single-nucleotide polymorphic markers for DNA identification (XSNPid) based on multiplex genotyping by multilocus PCR and MALDI-TOF mass spectrometry. Mol Biol 50, 387–397 (2016). https://doi.org/10.1134/S0026893316030158
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0026893316030158