Skip to main content
Log in

VLP vaccines and effects of HIV-1 Env protein modifications on their antigenic properties

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

An ideal protective HIV-1 vaccine can elicit broadly neutralizing antibodies, capable of preventing HIV transmission. The strategies of designing vaccines include generation of soluble recombinant proteins which mimic the native Env complex and are able to enhance the immunogenicity of gp120. Recent data indicate that the cytoplasmic tail (CT) of the Env protein has multiple functions, which can affect the early steps of infection, as well as viral assembly and antigenic properties. Modifications in the CT can be used to induce conformational changes in functional regions of gp120 and to stabilize the trimeric structure, avoiding immune misdirection and induction of non-neutralizing antibody responses. Env-trimers with modified CTs in virus-like particles (VLPs) are able to induce antibodies with broad spectrum neutralizing activity and high avidity and have the potential for developing an effective vaccine against HIV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CT:

cytoplasmic tail

MSD:

membrane spanning domain

VLPs:

virus-like particles

SIV:

simian immunodeficiency virus

References

  1. Doria-Rose N.A. 2010. HIV neutralizing antibodies: Clinical correlates and implications for vaccines. J. Infect. Dis. 201, 981–983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stamatatos L., Morris L., Burton D.R., Mascola J.R. 2009. Neutralizing antibodies generated during natural HIV-1 infection: Good news for an HIV-1 vaccine? Nat. Med. 15, 866–870.

    CAS  Google Scholar 

  3. Burton D.R., Hessell A.J., Keele B.F., Klasse P.J., Ketas T.A., Moldt B., Dunlop D.C., Poignard P., Doyle L.A., Cavacini L., Veazey R.S., Moore J.P. 2011. Limited or no protection by weakly or nonneutralizing antibodies against vaginal SHIV challenge of macaques compared with a strongly neutralizing antibody. Proc. Natl. Acad. Sci. U. S. A. 108, 11181–11186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Burton D.R., Poignard P., Stanfield R.L., Wilson I.A. 2012. Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses. Science. 337, 183–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen J, Kovacs J.M., Peng H., Rits-Volloch S., Lu J., Park D., Zablowsky E., Seaman M.S., Chen B. 2015. HIV-1 ENVELOPE. Effect of the cytoplasmic domain on antigenic characteristics of HIV-1 envelope glycoprotein. Science. 349, 191–195.

    CAS  PubMed  Google Scholar 

  6. Douek D.C., Kwong P.D., Nabel G.J. 2006. The rational design of an AIDS vaccine. Cell. 124, 677–681.

    Article  CAS  PubMed  Google Scholar 

  7. Go E.P., Irungu J., Zhang Y., Dalpathado D.S., Liao H.X., Sutherland L.L., Alam S.M., Haynes B.F., Desaire H. 2008. Glycosylation site-specific analysis of HIV envelope proteins (JR-FL and CON-S) reveals major differences in glycosylation site occupancy, glycoform profiles, and antigenic epitopes’ accessibility. J. Proteome Res. 7, 1660–1674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tong T., Crooks E.T., Osawa K., Robinson J.E., Barnes M., Apetrei C., Binley J.M. 2014. Multi-parameter exploration of HIV-1 virus-like particles as neutralizing antibody immunogens in guinea pigs, rabbits and macaques. Virology. 456–457, 55–69.

    Article  PubMed Central  Google Scholar 

  9. Kilgore K.M., Murphy M.K., Burton S.L., Wetzel K.S., Smith S.A., Xiao P., Reddy S., Francella N., Sodora D.L., Silvestri G., Cole K.S., Villenger F., Robinson J.E., Pulendran B., Hunter E., et al. 2015. Characterization and implementation of a diverse simian immunodeficiency virus SIVsm envelope panel in the assessment of neutralizing antibody breadth elicited in rhesus macaques by multimodal vaccines expressing the SIVmac239 envelope. J. Virol. 89, 8130–8151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Karacostas V., Nagashima K., Gonda M.A., Moss B. 1989. Human immunodeficiency virus-like particles produced by a vaccinia virus expression vector. Proc. Natl. Acad. Sci. U. S. A. 86, 8964–8967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shioda T., Shibuta H. 1990. Production of human immunodeficiency virus (HIV)-like particles from cells infected with recombinant vaccinia viruses carrying the gag gene of HIV. Virology. 175, 139–148.

    Article  CAS  PubMed  Google Scholar 

  12. Hu S.L., Travis B.M., Garrigues J., Zarling J.M., Sridhar P., Dykers T., Eichberg J.W., Alpers C. 1990. Processing, assembly, and immunogenicity of human immunodeficiency virus core antigens expressed by recombinant vaccinia virus. Virology. 179, 321–329.

    Article  CAS  PubMed  Google Scholar 

  13. Haffar O., Garrigues J., Travis B., Moran P., Zarling J., Hu S.L. 1990. Human immunodeficiency virus-like, nonreplicating, gag-env particles assemble in a recombinant vaccinia virus expression system. J. Virol. 64, 2653–2659.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Vzorov A.N., Bukrinsky M.I., Grigoriev V.B., Tentsov Y., Bukrinskaya A.G. 1991. Highly immunogenic human immunodeficiency viruslike particles are produced by recombinant vaccinia virus-infected cells. AIDS Res. Hum. Retroviruses. 7, 29–36.

    CAS  PubMed  Google Scholar 

  15. Moldoveanu Z., Vzorov A.N., Huang W.Q., Mestecky J., Compans R.W. 1999. Induction of immune responses to SIV antigens by mucosally administered vaccines. AIDS Res. Hum. Retroviruses. 15, 1469–1476.

    Article  CAS  PubMed  Google Scholar 

  16. Vzorov A.N., Wang L., Chen J., Wang B.-Z., Compans R.W. 2016. Effects of modifications of the HIV-1 Env cytoplasmic tail on immunogenicity of VLP vaccines. Virology. 489, 141–150.

    Article  CAS  PubMed  Google Scholar 

  17. Montefiori D.C., Safrit J.T., Lydy S.L., Barry A.P., Bilska M., Vo H.T., Klein M., Tartaglia J., Robinson H.L., Rovinski B. 2001. Induction of neutralizing antibodies and gag-specific cellular immune responses to an R5 primary isolate of human immunodeficiency virus type 1 in rhesus macaques. J. Virol. 75, 5879–5890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yao Q., Bu Z., Vzorov A., Yang C., Compans R.W. 2003. Virus-like particle and DNA-based candidate AIDS vaccines. Vaccine. 21, 638–643.

    Article  CAS  PubMed  Google Scholar 

  19. Visciano M.L., Tuen M., Gorny M.K., Hioe C.E. 2008. In vivo alteration of humoral responses to HIV-1 envelope glycoprotein gp120 by antibodies to the CD4- binding site of gp120. Virology. 372, 409–420.

    Article  CAS  PubMed  Google Scholar 

  20. Checkley M.A., Luttge B.G., Freed E.O. 2011. HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J. Mol. Biol. 410, 582–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lai R.P., Hock M., Radzimanowski J., Tonks P., Hulsik D.L., Effantin G., Seilly D.J., Dreja H., Kliche A., Wagner R., Barnett S.W., Tumba N., Morris L., LaBranche C.C., Montefiori D.C., et al. 2014. A fusion intermediate gp41 immunogen elicits neutralizing antibodies to HIV-1. J. Biol. Chem. 289, 29912–29926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dennison S.M., Sutherland L.L., Jaeger F.H., Anasti K.M., Parks R., Stewart S., Bowman C., Xia S.M., Zhang R., Shen X., Scearce R.M., Ofek G., Yang Y., Kwong P.D., Santra S., et al. 2011. Induction of antibodies in rhesus macaques that recognize a fusion-intermediate conformation of HIV-1 gp41. PLoS ONE. 6, e27824.

    Article  Google Scholar 

  23. McGuire A.T., Dreyer A.M., Carbonetti S., Lippy A., Glenn J., Scheid J.F., Mouquet H., Stamatatos L. 2014. HIV antibodies. Antigen modification regulates competition of broad and narrow neutralizing HIV antibodies. Science. 346, 1380–1383.

    CAS  PubMed  Google Scholar 

  24. Earl P.L., Broder C.C., Doms R.W., Moss B. 1997. Epitope map of human immunodeficiency virus type 1 gp41 derived from 47 monoclonal antibodies produced by immunization with oligomeric envelope protein. J. Virol. 71, 2674–2684.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang X., Farzan M., Wyatt R., Sodroski J. 2000. Characterization of stable, soluble trimers containing complete ectodomains of human immunodeficiency virus type 1 envelope glycoproteins. J. Virol. 74, 5716–5725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang X., Florin L., Farzan M., Kolchinsky P., Kwong P.D., Sodroski J., Wyatt R. 2000. Modifications that stabilize human immunodeficiency virus envelope glycoprotein trimers in solution. J. Virol. 74, 4746–4754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Earl P.L., Sugiura W., Montefiori D.C., Broder C.C., Lee S.A., Wild C., Lifson J., Moss B. 2001. Immunogenicity and protective efficacy of oligomeric human immunodeficiency virus type 1 gp140. J. Virol. 75, 645–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang X., Wyatt R., Sodroski J. 2001. Improved elicitation of neutralizing antibodies against primary human immunodeficiency viruses by soluble stabilized envelope glycoprotein trimers. J. Virol. 75, 1165–1171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Srivastava I.K., Stamatatos L., Kan E., Vajdy M., Lian Y., Hilt S., Martin L., Vita C., Zhu P., Roux K.H., Vojtech L., Montefiori D.C., Donnelly J., Ulmer J.B., Barnett S.W. 2003. Purification, characterization, and immunogenicity of a soluble trimeric envelope protein containing a partial deletion of the V2 loop derived from SF162, an R5-tropic human immunodeficiency virus type 1 isolate. J. Virol. 77, 11244–11259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nkolola J.P., Cheung A., Perry J.R., Carter D., Reed S., Schuitemaker H., Pau M.G., Seaman M.S., Chen B., Barouch D.H. 2014. Comparison of multiple adjuvants on the stability and immunogenicity of a clade C HIV-1 gp140 trimer. Vaccine. 32, 2109–2116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guttman M., Lee K.K. 2013. A functional interaction between gp41 and gp120 is observed for monomeric but not oligomeric, uncleaved HIV-1 Env gp140. J. Virol. 87, 11462–11475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ringe R.P., Sanders R.W., Yasmeen A., Kim H.J., Lee J.H., Cupo A., Korzun J., Derking R., van Montfort T., Julien J.P., Wilson I.A., Klasse P.J., Ward A.B., Moore J.P. 2013. Cleavage strongly influences whether soluble HIV-1 envelope glycoprotein trimers adopt a native-like conformation. Proc. Natl. Acad. Sci. U. S. A. 110, 18256–18261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sanders R.W., Moore J.P. 2014. HIV: A stamp on the envelope. Nature. 514, 437–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tran K., Poulsen C., Guenaga J., de Val N., Wilson R., Sundling C., Li Y., Stanfield R.L., Wilson I.A., Ward A.B., Karlsson Hedestam G.B., Wyatt R.T. 2014. Vaccine-elicited primate antibodies use a distinct approach to the HIV-1 primary receptor binding site informing vaccine redesign. Proc. Natl. Acad. Sci. U. S. A. 111, e738–747.

    Article  Google Scholar 

  35. Li Y., O’ Dell S., Wilson R., Wu X., Schmidt S.D., Hogerkorp C.M., Louder M.K., Longo N.S., Poulsen C., Guenaga J., Chakrabarti B.K., Doria-Rose N., Roederer M., Connors M. Mascola J.R., Wyatt R.T. 2012. HIV-1 neutralizing antibodies display dual recognition of the primary and coreceptor binding sites and preferential binding to fully cleaved envelope glycoproteins. J. Virol. 86, 11231–11241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Blattner C., Lee J.H., Sliepen K., Derking R., Falkowska E., de la Pena A.T., Cupo A., Julien J.P., van Gils M., Lee P.S., Peng W., Paulson J.C., Poignard P., Burton D.R., Moore J.P., et al. 2014. Structural delineation of a quaternary, cleavage-dependent epitope at the gp41-gp120 interface on intact HIV-1 Env trimers. Immunity. 40, 669–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Falkowska E., Le K.M., Ramos A., Doores K.J., Lee J.H., Blattner C., Ramirez A., Derking R., van Gils M.J., Liang C.H., Mcbride R., von Bredow B., Shivatare S.S., Wu C.Y., Chan-Hui P.Y., et al. 2014. Broadly neutralizing HIV antibodies define a glycan-dependent epitope on the prefusion conformation of gp41 on cleaved envelope trimers. Immunity. 40, 657–668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang J., Kang B.H., Pancera M., Lee J.H., Tong T., Feng Y., Imamichi H., Georgiev I.S., Chuang G.Y., Druz A., Doria-Rose N.A., Laub L., Sliepen K., van Gils M.J., de la Pena A.T., et al. 2014. Broad and potent HIV-1 neutralization by a human antibody that binds the gp41–gp120 interface. Nature. 515, 138–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Go E.P., Hua D., Desaire H. 2014. Glycosylation and disulfide bond analysis of transiently and stably expressed clade C HIV-1 gp140 trimers in 293T cells identifies disulfide heterogeneity present in both proteins and differences in O-linked glycosylation. J. Proteome Res. 13, 4012–4027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Binley J.M., Sanders R.W., Clas B., Schuelke N., Master A., Guo Y., Kajumo F., Anselma D.J., Maddon P.J., Olson W.C., Moore J.P. 2000. A recombinant human immunodeficiency virus type 1 envelope glycoprotein complex stabilized by an intermolecular disulfide bond between the gp120 and gp41 subunits is an antigenic mimic of the trimeric virion-associated structure. J. Virol. 74, 627–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sanders R.W., Vesanen M., Schuelke N., Master A., Schiffner L., Kalyanaraman R., Paluch M., Berkhout B., Maddon P.J., Olson W.C., Lu M., Moore J.P. 2002. Stabilization of the soluble, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1. J. Virol. 76, 8875–8889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Khayat R., Lee J.H., Julien J.P., Cupo A., Klasse P.J., Sanders R.W., Moore J.P., Wilson I.A., Ward A.B. 2013. Structural characterization of cleaved, soluble HIV-1 envelope glycoprotein trimers. J. Virol. 87, 9865–9872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Klasse P.J., Depetris R.S., Pejchal R., Julien J.P., Khayat R., Lee J.H., Marozsan A.J., Cupo A., Cocco N., Korzun J., Yasmeen A., Ward A.B., Wilson I.A., Sanders R.W., Moore J.P. 2013. Influences on trimerization and aggregation of soluble, cleaved HIV-1 SOSIP envelope glycoprotein. J. Virol. 87, 9873–9885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pugach P., Ozorowski G., Cupo A., Ringe R., Yasmeen A., de Val N., Derking R., Kim H.J., Korzun J., Golabek M., de Los Reyes K., Ketas T.J., Julien J.P., Burton D.R., Wilson I.A., et al. 2015. A native-like SOSIP.664 trimer based on an HIV-1 subtype B env gene. J. Virol. 89, 3380–3395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alving C.R., Matyas G.R., Torres O., Jalah R., Beck Z. 2014. Adjuvants for vaccines to drugs of abuse and addiction. Vaccine. 32, 5382–5389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Durova O.M., Vorobiev I.I., Smirnov I.V., Reshetnyak A.V., Telegin G.B., Shamborant O.G., Orlova N.A., Genkin D.D., Bacon A., Ponomarenko N.A., Friboulet A., Gabibov A.G. 2009. Strategies for induction of catalytic antibodies toward HIV-1 glycoprotein gp120 in autoimmune prone mice. Mol. Immunol. 47, 87–95.

    Article  CAS  PubMed  Google Scholar 

  47. Brito L.A., O’ Hagan D.T. 2014. Designing and building the next generation of improved vaccine adjuvants. J. Control Release. 190, 563–579.

    Article  CAS  PubMed  Google Scholar 

  48. Schenten D., Medzhitov R. 2011. The control of adaptive immune responses by the innate immune system. Adv. Immunol. 109, 87–124.

    Article  CAS  PubMed  Google Scholar 

  49. Meylan E., Tschopp J., Karin M. 2006. Intracellular pattern recognition receptors in the host response. Nature. 442, 39–44.

    Article  CAS  PubMed  Google Scholar 

  50. Lynn G.M., Laga R., Darrah P.A., Ishizuka A.S., Balaci A.J., Dulcey A.E., Pechar M., Pola R., Gerner M.Y., Yamamoto A., Buechler C.R., Quinn K.M., Smelkinson M.G., Vanek O., Cawood R., et al. 2015. In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nat. Biotechnol. 33, 1201–1210.

    Article  CAS  PubMed  Google Scholar 

  51. Mizel S.B., Honko A.N., Moors M.A., Smith P.S., West A.P. 2003. Induction of macrophage nitric oxide production by Gram-negative flagellin involves signaling via heteromeric Toll-like receptor 5/Toll-like receptor 4 complexes. J. Immunol. 170, 6217–6223.

    Article  CAS  PubMed  Google Scholar 

  52. Honko A.N., Sriranganathan N., Lees C.J., Mizel S.B. 2006. Flagellin is an effective adjuvant for immunization against lethal respiratory challenge with Yersinia pestis. Infect. Immun. 74, 1113–1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cuadros C., Lopez-Hernandez F.J., Dominguez A.L., McClelland M., Lustgarten J. 2004. Flagellin fusion proteins as adjuvants or vaccines induce specific immune responses. Infect. Immun. 72, 2810–2816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vassilieva E.V., Wang B.Z., Vzorov A.N., Wang L., Wang Y.C., Bozja J., Xu R., Compans R.W. 2011. Enhanced mucosal immune responses to HIV viruslike particles containing a membrane-anchored adjuvant. MBio. 2, e00328–e00310.

    Article  Google Scholar 

  55. Skountzou I., Quan F.S., Gangadhara S., Ye L., Vzorov A., Selvaraj P., Jacob J., Compans R.W., Kang S.M. 2007. Incorporation of glycosylphosphatidylinositol-anchored granulocyte-macrophage colony-stimulating factor or CD40 ligand enhances immunogenicity of chimeric simian immunodeficiency virus-like particles. J. Virol. 81, 1083–1094.

    Article  CAS  PubMed  Google Scholar 

  56. Feng H., Zhang H., Deng J., Wang L., He Y., Wang S., Seyedtabaei R., Wang Q., Liu L., Galipeau J., Compans R.W., Wang B.Z. 2015. Incorporation of a GPIanchored engineered cytokine as a molecular adjuvant enhances the immunogenicity of HIV VLPs. Sci. Rep. 5, 11856.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Derdeyn C.A., Decker J.M., Bibollet-Ruche F., Mokili J.L., Muldoon M., Denham S.A., Heil M.L., Kasolo F., Musonda R., Hahn B.H., Shaw G.M., Korber B.T., Allen S., Hunter E. 2004. Envelope-constrained neutralization- sensitive HIV-1 after heterosexual transmission. Science. 303, 2019–2022.

    Article  CAS  PubMed  Google Scholar 

  58. Wang B.Z., Liu W., Kang S.M., Alam M., Huang C., Ye L., Sun Y., Li Y., Kothe D.L., Pushko P., Dokland T., Haynes B.F., Smith G., Hahn B.H., Compans R.W. 2007. Incorporation of high levels of chimeric human immunodeficiency virus envelope glycoproteins into virus-like particles. J. Virol. 81, 10869–10878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Go E.P., Chang Q., Liao H.X., Sutherland L.L., Alam S.M., Haynes B.F., Desaire H. 2009. Glycosylation site-specific analysis of clade C HIV-1 envelope proteins. J. Proteome Res. 8, 4231–4242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Irungu J., Go E.P., Zhang Y., Dalpathado D.S., Liao H.X., Haynes B.F., Desaire H. 2008. Comparison of HPLC/ESI-FTICR MSversus MALDI-TOF/TOF MSfor glycopeptide analysis of a highly glycosylated HIV envelope glycoprotein. J. Am. Soc. Mass Spectrom. 19, 1209–1220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Quan F.S., Sailaja G., Skountzou I., Huang C., Vzorov A., Compans R.W., Kang S.M. 2007. Immunogenicity of virus-like particles containing modified human immunodeficiency virus envelope proteins. Vaccine. 25, 3841–3850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vincent M.J., Melsen L.R., Martin A.S., Compans R.W. 1999. Intracellular interaction of simian immunodeficiency virus Gag and Env proteins. J. Virol. 73, 8138–8144.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Vzorov A.N., Compans R.W. 1996. Assembly and release of SIV env proteins with full-length or truncated cytoplasmic domains. Virology. 221, 22–33.

    Article  CAS  PubMed  Google Scholar 

  64. Vzorov A.N., Weidmann A., Kozyr N.L., Khaoustov V., Yoffe B., Compans R.W. 2007. Role of the long cytoplasmic domain of the SIV Env glycoprotein in early and late stages of infection. Retrovirology. 4, 94.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ritter G.D. Jr., Mulligan M.J., Lydy S.L., Compans R.W. 1993. Cell fusion activity of the simian immunodeficiency virus envelope protein is modulated by the intracytoplasmic domain. Virology. 197, 255–264.

    Article  CAS  PubMed  Google Scholar 

  66. Spies C.P., Compans R.W. 1994. Effects of cytoplasmic domain length on cell surface expression and syncytium- forming capacity of the simian immunodeficiency virus envelope glycoprotein. Virology. 203, 8–19.

    Article  CAS  PubMed  Google Scholar 

  67. Edwards T.G., Wyss S., Reeves J.D., Zolla-Pazner S., Hoxie J.A., Doms R.W., Baribaud F. 2002. Truncation of the cytoplasmic domain induces exposure of conserved regions in the ectodomain of human immunodeficiency virus type 1 envelope protein. J. Virol. 76, 2683–2691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vzorov A.N., Compans R.W. 2011. Effects of stabilization of the gp41 cytoplasmic domain on fusion activity and infectivity of SIVmac239. AIDS Res. Hum. Retroviruses. 27, 1213–1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vzorov A.N., Gernert K.M., Compans R.W. 2005. Multiple domains of the SIV Env protein determine virus replication efficiency and neutralization sensitivity. Virology. 332, 89–101.

    Article  CAS  PubMed  Google Scholar 

  70. Wyss S., Dimitrov A.S., Baribaud F., Edwards T.G., Blumenthal R., Hoxie J.A. 2005. Regulation of human immunodeficiency virus type 1 envelope glycoprotein fusion by a membrane-interactive domain in the gp41 cytoplasmic tail. J. Virol. 79, 12231–12241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vzorov A.N., Compans R.W. 2000. Effect of the cytoplasmic domain of the simian immunodeficiency virus envelope protein on incorporation of heterologous envelope proteins and sensitivity to neutralization. J. Virol. 74, 8219–8225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sauter M.M., Pelchen-Matthews A., Bron R., Marsh M., LaBranche C.C., Vance. PJ., Romano J., Haggarty B.S., Hart T.K., Lee W.M., Hoxie J.A. 1996. An internalization signal in the simian immunodeficiency virus transmembrane protein cytoplasmic domain modulates expression of envelope glycoproteins on the cell surface. J. Cell Biol. 132, 795–811.

    Article  CAS  PubMed  Google Scholar 

  73. Bowers K., Pelchen-Matthews A., Honing S., Vance P.J., Creary L., Haggarty B.S., Romano J., Ballenseifen W., Hoxie J.A., Marsh M. 2000. The simian immunodeficiency virus envelope glycoprotein contains multiple signals that regulate its cell surface expression and endocytosis. Traffic. 1, 661–674.

    Article  CAS  PubMed  Google Scholar 

  74. Berlioz-Torrent C., Shacklett B.L., Erdtmann L., Delamarre L., Bouchaert I., Sonigo P., Dokhelar M.C., Benarous R. 1999. Interactions of the cytoplasmic domains of human and simian retroviral transmembrane proteins with components of the clathrin adaptor complexes modulate intracellular and cell surface expression of envelope glycoproteins. J. Virol. 73, 1350–1361.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. LaBranche C.C., Sauter M.M., Haggarty B.S., Vance P.J., Romano J., Hart T.K., Bugelski P.J., Marsh M., Hoxie J.A. 1995. A single amino acid change in the cytoplasmic domain of the simian immunodeficiency virus transmembrane molecule increases envelope glycoprotein expression on infected cells. J. Virol. 69, 5217–5227.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Yang C., Spies C.P., Compans R.W. 1995. The human and simian immunodeficiency virus envelope glycoprotein transmembrane subunits are palmitoylated. Proc. Natl. Acad. Sci. U. S. A. 92, 9871–9875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lodge R., Lalonde J.P., Lemay G., Cohen E.A. 1997. The membrane-proximal intracytoplasmic tyrosine residue of HIV-1 envelope glycoprotein is critical for basolateral targeting of viral budding in MDCK cells. EMBO J. 16, 695–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bhattacharya J., Peters P.J., Clapham P.R. 2004. Human immunodeficiency virus type 1 envelope glycoproteins that lack cytoplasmic domain cysteines: Impact on association with membrane lipid rafts and incorporation onto budding virus particles. J. Virol. 78, 5500–5506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chen S.S., Lee S.F., Wang C.T. 2001. Cellular membrane- binding ability of the C-terminal cytoplasmic domain of human immunodeficiency virus type 1 envelope transmembrane protein gp41. J. Virol. 75, 9925–9938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chernomordik L., Chanturiya A.N., Suss-Toby E., Nora E., Zimmerberg J. 1994. An amphipathic peptide from the C-terminal region of the human immunodeficiency virus envelope glycoprotein causes pore formation in membranes. J. Virol. 68, 7115–7123.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Comardelle A.M., Norris C.H., Plymale D.R., Gatti P.J., Choi B., Fermin C.D., Haislip A.M., Tencza S.B., Meitzner T.A., Montelaro R.C., Garry R.F. 1997. A synthetic peptide corresponding to the carboxy terminus of human immunodeficiency virus type 1 transmembrane glycoprotein induces alterations in the ionic permeability of Xenopus laevis oocytes. AIDS Res. Hum. Retroviruses. 13, 1525–1532.

    Article  CAS  PubMed  Google Scholar 

  82. Kalia V., Sarkar S., Gupta P., Montelaro R.C. 2003. Rational site-directed mutations of the LLP-1 and LLP-2 lentivirus lytic peptide domains in the intracytoplasmic tail of human immunodeficiency virus type 1 gp41 indicate common functions in cell-cell fusion but distinct roles in virion envelope incorporation. J. Virol. 77, 3634–3646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Miller M.A., Cloyd M.W., Liebmann J., Rinaldo C.R., Jr., Islam K.R., Wang S.Z., Meitzner T.A., Montelaro R.C. 1993. Alterations in cell membrane permeability by the lentivirus lytic peptide (LLP-1) of HIV-1 transmembrane protein. Virology. 196, 89–100.

    Article  CAS  PubMed  Google Scholar 

  84. Venable R.M., Pastor R.W., Brooks B.R., Carson F.W. 1989. Theoretically determined threedimensional structures for amphipathic segments of the HIV-1 gp41 envelope protein. AIDS Res. Hum. Retroviruses. 5, 7–22.

    Article  CAS  PubMed  Google Scholar 

  85. Srinivas S.K., Srinivas R.V., Anantharamaiah G.M., Segrest J.P., Compans R.W. 1992. Membrane interactions of synthetic peptides corresponding to amphipathic helical segments of the human immunodeficiency virus type-1 envelope glycoprotein. J. Biol. Chem. 267, 7121–7127.

    CAS  PubMed  Google Scholar 

  86. Bu Z., Ye L., Vzorov A., Taylor D., Compans R.W., Yang C. 2004. Enhancement of immunogenicity of an HIV Env DNA vaccine by mutation of the Tyr-based endocytosis motif in the cytoplasmic domain. Virology. 328, 62–73.

    Article  CAS  PubMed  Google Scholar 

  87. Ye L., Bu Z., Vzorov A., Taylor D., Compans R.W., Yang C. 2004. Surface stability and immunogenicity of the human immunodeficiency virus envelope glycoprotein: Role of the cytoplasmic domain. J. Virol. 78, 13409–13419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Luciw P.A., Shaw K.E., Unger R.E., Planelles V., StoutM.W., Lackner J.E., Pratt-Lowe E., Leung N.J., Banapour B., Marthas M.L. 1992. Genetic and biological comparisons of pathogenic and nonpathogenic molecular clones of simian immunodeficiency virus (SIVmac). AIDS Res. Hum. Retroviruses. 8, 395–402.

    Article  CAS  PubMed  Google Scholar 

  89. Marthas M.L., Banapour B., Sutjipto S., Siegel M.E., Marx P.A., Gardner M.B., Pedersen N.C., Luciw P.A. 1989. Rhesus macaques inoculated with molecularly cloned simian immunodeficiency virus. J. Med. Primatol. 18, 311–319.

    CAS  PubMed  Google Scholar 

  90. Sharp P.M., Hahn B.H. 2011. Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med. 1, a006841.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Spies C.P., Ritter G.D., Jr., Mulligan M.J., Compans R.W. 1994. Truncation of the cytoplasmic domain of the simian immunodeficiency virus envelope glycoprotein alters the conformation of the external domain. J. Virol. 68, 585–591.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Zerhouni B., Nelson J.A., Saha K. 2004. Isolation of CD4-independent primary human immunodeficiency virus type 1 isolates that are syncytium inducing and acutely cytopathic for CD8+ lymphocytes. J. Virol. 78, 1243–1255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vzorov A.N., Yang C., Compans R.W. 2015. An amphipathic sequence in the cytoplasmic tail of HIV-1 Env alters cell tropism and modulates viral receptor specificity. Acta Virol. 59, 209–220.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Vzorov.

Additional information

Published in Russian in Molekulyarnaya Biologiya, 2016, Vol. 50, No. 3, pp. 406–415.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vzorov, A.N., Compans, R.W. VLP vaccines and effects of HIV-1 Env protein modifications on their antigenic properties. Mol Biol 50, 353–361 (2016). https://doi.org/10.1134/S0026893316030110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893316030110

Keywords

Navigation