Skip to main content
Log in

Creation of DNA vaccine vector based on codon-optimized gene of rabies virus glycoprotein (G protein) with consensus amino acid sequence

  • Short Communications
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

An optimized design of the rabies virus glycoprotein (G protein) for use within DNA vaccines has been suggested. The design represents a territorially adapted antigen constructed taking into account glycoprotein amino acid sequences of the rabies viruses registered in the Russian Federation and the vaccine Vnukovo-32 strain. Based on the created consensus amino acid sequence, the nucleotide codon-optimized sequence of this modified glycoprotein was obtained and cloned into the pVAX1 plasmid (a vector of the last generation used in the creation of DNA vaccines). A twofold increase in this gene expression compared to the expression of the Vnukovo-32 strain viral glycoprotein gene in a similar vector was registered in the transfected cell culture. It has been demonstrated that the accumulation of modified G protein exceeds the number of the control protein synthesized using the plasmid with the Vnukovo-32 strain viral glycoprotein gene by 20 times. Thus, the obtained modified rabies virus glycoprotein can be considered to be a promising DNA vaccine antigen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Starodubova E.S., Preobrazhenskaya O.V., Kuz’menko Yu.V., Latanova A.A., Yarygina E.I., Karpov V.L. 2015. Rabies vaccines: Current status and prospects for development. Mol. Biol. (Moscow). 49 (4), 513–519.

    Article  CAS  Google Scholar 

  2. Kaur M., Garg R., Singh S., Bhatnagar R. 2014. Rabies vaccines: Where do we stand, where are we heading? Expert Rev. Vaccines. 14, 369–381.

    Article  PubMed  Google Scholar 

  3. Yang D.K., Kim H.H., Lee K.W., Song J.Y. 2013. The present and future of rabies vaccine in animals. Clin. Exp. Vaccine Res. 2, 19–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tuchkov I.V., Nikiforov A.K. 2010. DNA immunization against rabies. Probl. Osobo Opasn. Infekts. 104, 74–78.

    Google Scholar 

  5. Ferraro B., Morrow M.P., Hutnick N.A., Shin T.H., Lucke C.E., Weiner D.B. 2011. Clinical applications of DNA vaccines: Current progress. Clin. Infect. Dis. 53, 296–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fodor I., Kucsera L., Fodor N., Palfi V., Grabko V.I. 2000. Gene immunization of mice with plasmid DNA expressing rabies virus glycoprotein. Acta Vet. Hung. 48, 229–236.

    CAS  PubMed  Google Scholar 

  7. Hutnick N.A., Myles D.J., Bian C.B., Muthumani K., Weiner D.B. 2011. Selected approaches for increasing HIV DNA vaccine immunogenicity in vivo. Curr. Opin. Virol. 1, 233–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Saade F., Petrovsky N. 2012. Technologies for enhanced efficacy of DNA vaccines. Expert Rev. Vaccines. 11, 189–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cheung Y.K., Cheng S.C., Sin F.W., Xie Y. 2004. Plasmid encoding papillomavirus type 16 (HPV16) DNA constructed with codon optimization improved the immunogenicity against HPV infection. Vaccine. 23, 629–638.

    Article  CAS  PubMed  Google Scholar 

  10. Megati S., Garcia-Hand D., Cappello S., Roopchand V., Masood A., Xu R., Luckay A., Chong S.Y., Rosati M., Sackitey S., Weiner D.B., Felber B.K., Pavlakis G.N., Israel Z.R., Smith L.R., et al. 2008. Modifying the HIV-1 env gp160 gene to improve pDNA vaccine-elicited cell-mediated immune responses. Vaccine. 26, 5083–5094.

    Article  CAS  PubMed  Google Scholar 

  11. Ternette N., Tippler B., Uberla K., Grunwald T. 2007. Immunogenicity and efficacy of codon optimized DNA vaccines encoding the F-protein of respiratory syncytial virus. Vaccine. 25, 7271–7279.

    Article  CAS  PubMed  Google Scholar 

  12. Tenbusch M., Grunwald T., Niezold T., Storcksdieck Genannt Bonsmann M., Hannaman D., Norley S., Uberla K. 2010. Codon-optimization of the hemagglutinin gene from the novel swine origin H1N1 influenza virus has differential effects on CD4(+) T-cell responses and immune effector mechanisms following DNA electroporation in mice. Vaccine. 28, 3273–3277.

    Article  CAS  PubMed  Google Scholar 

  13. Obeng-Adjei N., Hutnick N.A., Yan J., Chu J.S., Myles D.J., Morrow M.P., Sardesai N.Y., Weiner D.B. 2013. DNA vaccine cocktail expressing genotype A and C HBV surface and consensus core antigens generates robust cytotoxic and antibody responses in mice and Rhesus macaques. Cancer Gene Ther. 20, 652–662.

    Article  CAS  PubMed  Google Scholar 

  14. Yan J., Villarreal D.O., Racine T., Chu J.S., Walters J.N., Morrow M.P., Khan A.S., Sardesai N.Y., Kim J.J., Kobinger G.P., Weiner D.B. 2014. Protective immunity to H7N9 influenza viruses elicited by synthetic DNA vaccine. Vaccine. 32, 2833–2842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Latimer B., Toporovski R., Yan J., Pankhong P., Morrow M.P., Khan A.S., Sardesai N.Y., Welles S.L., Jacobson J.M., Weiner D.B., Kutzler M.A. 2014. Strong HCV NS3/4a, NS4b, NS5a, NS5b-specific cellular immune responses induced in Rhesus macaques by a novel HCV genotype 1a/1b consensus DNA vaccine. Hum. Vaccin. Immunother. 10, 2357–2365.

    Article  CAS  PubMed  Google Scholar 

  16. Yan J., Corbitt N., Pankhong P., Shin T., Khan A., Sardesai N.Y., Weiner D.B. 2011. Immunogenicity of a novel engineered HIV-1 clade C synthetic consensusbased envelope DNA vaccine. Vaccine. 29, 7173–7181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Almeida R.R., Rosa D.S., Ribeiro S.P., Santana V.C., Kallas E.G., Sidney J., Sette A., Kalil J., Cunha-Neto E. 2012. Broad and cross-clade CD4+ T-cell responses elicited by a DNA vaccine encoding highly conserved and promiscuous HIV-1 M-group consensus peptides. PLoS ONE. 7, e45267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liao H.X., Tsao C.Y., Alam S.M., Muldoon M., Vandergrift N., Ma B.J., Lu X., Sutherland L.L., Scearce R.M., Bowman C., Parks R., Chen H., Blinn J.H., Lapedes A., Watson S., et al. 2013. Antigenicity and immunogenicity of transmitted/founder, consensus, and chronic envelope glycoproteins of human immunodeficiency virus type 1. J. Virol. 87, 4185–4201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Movsesyants A.A. Ageenko G.B. 2006. Antirabies agents used in the Russian Federation. RET-Info, 1, 44–45.

    Google Scholar 

  20. Ivanov A.V., Smirnova O.A., Ivanova O.N., Masalova O.V., Kochetkov S.N., Isaguliants M.G. 2011. Hepatitis C virus proteins activate NRF2/ARE pathway by distinct ROS-dependent and independent mechanisms in HUH7 cells. PLoS ONE. 6, e24957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schmittgen T.D., Livak K.J. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  22. Kaur M., Rai A., Bhatnagar R. 2009. Rabies DNA vaccine: No impact of MHC class I and class II targeting sequences on immune response and protection against lethal challenge. Vaccine. 27, 2128–2137.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Starodubova.

Additional information

Original Russian Text © E.S. Starodubova, Y.V. Kuzmenko, A.A. Latanova, O.V. Preobrazhenskaya, V.L. Karpov, 2016, published in Molekulyarnaya Biologiya, 2016, Vol. 50, No. 2, pp. 376–380.

UDC 577.21

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starodubova, E.S., Kuzmenko, Y.V., Latanova, A.A. et al. Creation of DNA vaccine vector based on codon-optimized gene of rabies virus glycoprotein (G protein) with consensus amino acid sequence. Mol Biol 50, 328–331 (2016). https://doi.org/10.1134/S0026893316020242

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893316020242

Keywords

Navigation