Skip to main content
Log in

Overexpression, homology modeling and coenzyme docking studies of the cytochrome P450nor2 from Cylindrocarpon tonkinense

  • Structural and Functional Analysis of Biopolymers and Biopolymer Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2016

Abstract

Cytochrome P450nor catalyzes an unusual reaction that transfers electrons from NADP/NADPH to bound heme directly. To improve the expression level of P450nor2 from Cylindrocarpon tonkinense (C.P450nor2), Escherichia coli system was utilized to substitute the yeast system we constructed for expression of the P450nor2 gene, and the protein was purified in soluble form using Ni+-NTA affinity chromatography. In contrast to P450nor from Fusarium oxysporum (F.P450nor) and P450nor1 from Cylindrocarpon tonkinense (C.P450nor1), C.P450nor2 shows a dual specificity for using NADH or NADPH as electron donors. The present study developed a computational approach in order to illustrate the coenzyme specificity of C.P450nor2 for NADH and NADPH. This study involved homology modeling of C.P450nor2 and docking analyses of NADH and NADPH into the crystal structure of F.P450nor and the predictive model of C.P450nor2, respectively. The results suggested that C.P450nor2 and F.P450nor have different coenzyme specificity for NADH and NADPH; whilst the space around the B'-helix of the C.P450nor2, especially the Ser79 and Gly81, play a crucial role for the specificity of C.P450nor2. In the absence of the experimental structure of C.P450nor2, we hope that our model will be useful to provide rational explanation on coenzyme specificity of C.P450nor2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sen K., Hackett J.C. 2010. Peroxo-iron mediated deformylation in sterol 14alpha-demethylase catalysis. J. Am. Chem. Soc. 132, 10293–10305.

    Article  CAS  PubMed  Google Scholar 

  2. Kirton S.B., Baxter C.A., Sutcliffe M.J. 2002. Comparative modelling of cytochromes P450. Adv. Drug Deliv. Rev. 54, 385–406.

    Article  CAS  PubMed  Google Scholar 

  3. Shoun H., Fushinobu S., Jiang L., Kim S.W., Wakagi T. 2012. Fungal denitrification and nitric oxide reductase cytochrome P450nor. Phil. Trans. R. Soc. Lond. B. 367, 1186–1194.

    Article  CAS  Google Scholar 

  4. Kaya M., Matsumura K., Higashida K., Hata Y., Kawato A., Abe Y., Akita O., Takaya N., Shoun H. 2004. Cloning and enhanced expression of the cytochrome P450nor gene (nicA; CYP55A5) encoding nitric oxide reductase from Aspergillus oryzae. Biosci. Biotechnol. Biochem. 68, 2040–2049.

    Article  CAS  PubMed  Google Scholar 

  5. Watsuji T.O., Takaya N., Nakamura A., Shoun H. 2003. A possible role of NADPH-dependent cytochrome P450nor isozyme in glycolysis under denitrifying conditions. Biosci. Biotechnol. Biochem. 67, 1109–1114.

    Article  CAS  PubMed  Google Scholar 

  6. Usuda K., Toritsuka N., Matsuo Y., Kim D.H., Shoun H. 1995. Denitrification by the fungus Cylindrocarpon tonkinense: Anaerobic cell growth and two isozyme forms of cytochrome P-450nor. Appl. Environ. Microbiol. 61, 883–889.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Fujii T., Takaya N. 2008. Denitrification by the fungus Fusarium oxysporum involves NADH-nitrate reductase. Biosci. Biotechnol. Biochem. 72, 412–420.

    Article  CAS  PubMed  Google Scholar 

  8. Baggs EM. 2011. Soil microbial sources of nitrous oxide: recent advances in knowledge, emerging challenges and future direction. Curr. Opin. Environ. Sustainability. 3, 321–327.

    Article  Google Scholar 

  9. Takaya N., Suzuki S., Kuwazaki S., Shoun H., Maruo F., Yamaguchi M., Takeo K. 1999. Cytochrome P450nor, a novel class of mitochondrial cytochrome P450 involved in nitrate respiration in the fungus Fusarium oxysporum. Arch. Biochem. Biophys. 372, 340–346.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang L., Kudo T., Takaya N., Shoun H. 2002. The B’ helix determines cytochrome P450nor specificity for the electron donors NADH and NADPH. J. Biol. Chem. 277, 33842–33847.

    Article  CAS  PubMed  Google Scholar 

  11. Crešnar B., Petric Š. 2011. Cytochrome P450 enzymes in the fungal kingdom. Biochim. Biophys. Acta: Proteins Proteomics. 1814, 29–35.

    Article  Google Scholar 

  12. Kudo T., Tomura D., Liu D.L., Dai X.Q., Shoun H. 1996. Two isozymes of P450nor of Cylindrocarpon tonkinense: Molecular cloning of the cDNAs and genes, expressions in the yeast, and the putative NAD(P)Hbinding site. Biochimie. 78, 792–799.

    Article  CAS  PubMed  Google Scholar 

  13. Goodwin J.A., Kurtikyan T.S. 2011. Electrocatalytic reactions of dioxygen and nitric oxide with reduced (nitrosyl) cobalt porphyrins: Cyclic voltammetry and computational chemistry. J. Porphyrins Phthalocyanines. 15, 99–105.

    Article  CAS  Google Scholar 

  14. Zhang L., Takaya N., Kitazume T., Kondo T., Shoun H. 2001. Purification and cDNA cloning of nitric oxide reductase cytochrome P450nor (CYP55A4) from Trichosporon cutaneum. Eur. J. Biochem. 268, 3198–3204.

    Article  CAS  PubMed  Google Scholar 

  15. Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thompson J.D., Higgins D.G., Gibson T.J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eswar N., Webb B., Marti-Renom M.A., Madhusudhan M.S., Eramian D., Shen M.-Y., Pieper U., Sali A. 2001. Comparative protein structure modeling using MODELLER. Curr. Protocols Prot. Sci. 50 (2.9), 2.9.1–2.9.31.

  18. Hess B., Kutzner C., van der Spoel D., Lindahl E. 2008. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447.

    Article  CAS  PubMed  Google Scholar 

  19. York D., Yang W. 1994. The fast Fourier Poisson method for calculating Ewald sums. J. Chem. Phys. 101, 3298–3300.

    Article  CAS  Google Scholar 

  20. Laskowski R.A., MacArthur M.W., Moss D.S., Thornton J.M. 1993. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291.

    Article  CAS  Google Scholar 

  21. Rarey M., Kramer B., Lengauer T., Klebe G. 1996. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261, 470–489.

    Article  CAS  PubMed  Google Scholar 

  22. Shimizu H., Obayashi E., Gomi Y., Arakawa H., Park S.Y., Nakamura H., Adachi S., Shoun H., Shiro Y. 2000. Proton delivery in NO reduction by fungal nitric-oxide reductase: Cryogenic crystallography, spectroscopy, and kinetics of ferric-NO complexes of wild-type and mutant enzymes. J. Biol. Chem. 275, 4816–4826.

    Article  CAS  PubMed  Google Scholar 

  23. Okamoto N., Tsuruta K., Imai Y., Tomura D., Shoun H. 1997. Fungal P450nor: Expression in Escherichia coli and site-directed mutageneses at the putative distal region. Arch. Biochem. Biophys. 337, 338–344.

    Article  CAS  PubMed  Google Scholar 

  24. Chao L.Y., Rine J., Marletta M.A. 2008. Spectroscopic and kinetic studies of Nor1, a cytochrome P450 nitric oxide reductase from the fungal pathogen Histoplasma capsulatum. Arch. Biochem. Biophys. 480, 132–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou Z., Takaya N., Shoun H. 2010. Multi-energy metabolic mechanisms of the fungus Fusarium oxysporum in low oxygen environments. Biosci. Biotechnol. Biochem. 74, 2431–2437.

    Article  CAS  PubMed  Google Scholar 

  26. Menyhárd D.K., Keserű G.M. 2006. Binding mode analysis of the NADH cofactor in nitric oxide reductase: A theoretical study. J. Mol. Graphics Model. 25, 363–372.

    Article  Google Scholar 

  27. Kramos B., Menyhard D.K., Olah J. 2012. Direct hydride shift mechanism and stereoselectivity of P450nor confirmed by QM/MM calculations. J. Phys. Chem. B. 116, 872–885.

    Article  CAS  PubMed  Google Scholar 

  28. Oshima R., Fushinobu S., Su F., Zhang L., Takaya N., Shoun H. 2004. Structural evidence for direct hydride transfer from NADH to cytochrome P450nor. J. Mol. Biol. 342, 207–217.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Z. Zhang or D. L. Liu.

Additional information

Published in Russian in Molekulyarnaya Biologiya, 2016, Vol. 50, No. 2, pp. 368–375.

The article is published in the original.

These authors contributed equally.

An erratum to this article can be found at http://dx.doi.org/10.1134/S0026893316050198.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Zhang, Y.Z., Li, D.D. et al. Overexpression, homology modeling and coenzyme docking studies of the cytochrome P450nor2 from Cylindrocarpon tonkinense . Mol Biol 50, 320–327 (2016). https://doi.org/10.1134/S002689331602014X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689331602014X

Keywords

Navigation