Skip to main content
Log in

Molecular dynamics of immune complex of photoadduct-containing DNA with Fab-Anti-DNA antibody fragment

  • Structural and Functional Analysis of Biopolymers and Their Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Antibodies to DNA play an important role in the pathogenesis of autoimmune diseases. The elucidation of structural mechanisms of both the antigen recognition and the interaction of anti-DNA antibodies with DNA will help to understand the role of DNA-containing immune complexes in various pathologies and can provide a basis for new treatment modalities. Moreover, the DNA-antibody complex is an analog of specific intracellular DNA-protein interactions. In this work, we used in silico molecular dynamic simulations of bimolecular complexes of the dsDNA segment containing the Fab fragment of an anti-DNA antibody to obtain the detailed thermodynamic and structural characteristics of dynamic intermolecular interactions. Using computationally modified crystal structure of the Fab-DNA complex (PDB ID: 3VW3), we studied the equilibrium molecular dynamics of the 64M-5 antibody Fab fragment associated with the dsDNA fragment containing the thymine dimer, the product of DNA photodamage. Amino acid residues that constitute paratopes and the complementary nucleotide epitopes for the Fab-DNA construct were identified. Stacking and electrostatic interactions were found to play the main role in mediating the most specific antibodydsDNA contacts, while hydrogen bonds were less significant. These findings may shed light on the formation and properties of pathogenic anti-DNA antibodies in autoimmune diseases, such as systemic lupus erythematosus associated with skin photosensitivity and DNA photodamage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

dsDNA:

double-stranded DNA

RMSF:

Root Mean Square Fluctuations of atoms

CDR:

complementary determining region for antigen recognition

MD:

molecular dynamics

SLE:

systemic lupus erythematosus

References

  1. Hahn B.H. 1998. Antibodies to DNA. N. Engl. J. Med. 338, 1359–1368.

    Article  CAS  PubMed  Google Scholar 

  2. Yung S., Chan T.M. 2008. Anti-DNA antibodies in the pathogenesis of lupus nephritis: The emerging mechanisms. Autoimmun. Rev. 7, 317–321.

    Article  CAS  PubMed  Google Scholar 

  3. Greenspan N., Lu M., Shipley J., Ding X., Li Q., Sultana D., Kollaros M., Schreiber J.R., Fu P., Putterman C., Emancipator S.N. 2012. IgG3 deficiency extends lifespan and attenuates progression of glomerulonephritis in MRL/lpr mice. Biol. Direct. 7, 3–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Krishnan M.R., Wang C., Marion T.N. 2012. Anti- DNA autoantibodies initiate experimental lupus nephritis by binding directly to the glomerular basementmembrane in mice. Kidney Int. 82, 184–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ito S., Toyoda K. 2006. Bispecific Abs against modified protein and DNA with oxidized lipids. Proc. Natl. Acad. Sci. U. S. A. 103, 6160–6165.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Herron J.N., He X.M., Ballard D.W., Blier P.R., Pace P.E., Bothwell A.L.M., Voss E.W., Edmundson A.B. 1991. An autoantibody to single-stranded DNA: comparison of the three-dimensional structures of the unliganded Fab and a deoxynucleotide-Fab complex. Proteins. 91, 159–175.

    Article  Google Scholar 

  7. Mol C., Muir A., Cygler M., Lee J.S., Anderson W.F. 1994. Structure of an immunoglobulin Fab fragment specific for triple-stranded DNA. J. Biol. Chem. 269, 3615–3622.

    CAS  PubMed  Google Scholar 

  8. Pokkuluri P., Bouthillier F., Li Y., Kuderova A., Lee J., Cygler M. 1994. Preparation, characterization and crystallization of an antibody Fab fragment that recognizes RNA. Crystal structures of native Fab and three Fab-mononucleotide complexes. J. Mol. Biol. 243, 283–297.

    CAS  PubMed  Google Scholar 

  9. Yokoyama H., Mizutani R., Satow Y., Komatsu Y., Ohtsuka E., Nikaido O. 1999. Crystal structures of the 64M-2 and 64M-3 antibody Fabs complexed with DNA (6-4) photoproducts. Nucl. Acids Symp. Ser. 42, 267–268.

    Article  CAS  Google Scholar 

  10. Yokoyama H., Mizutani R., Satow Y., Komatsu Y., Ohtsuka E., Nikaido O. 2000. Crystal structure of the 64M-2 antibody Fab fragment in complex with a DNA dT(6-4)T photoproduct formed by ultravioletradiation. J. Mol. Biol. 299, 711–723.

    Article  CAS  PubMed  Google Scholar 

  11. Kobayashi H., Morioka H., Tobisawa K., Torizawa T., Kato K., Shimada I., Nikaido O., Stewart J.D., Ohtsuka E. 1999. Probing the interaction between a highaffinity single-chain Fv and a pyrimidine (6-4) pyrimidone photodimer by site-directed mutagenesis. Biochemistry. 38, 532–539.

    Article  CAS  PubMed  Google Scholar 

  12. Kabat E.A., Wu T.T., Perry H.M., Gottesman K.S., Foeller C. 1991). Sequences of Proteins of Immunological Interest, 5th ed. NIH Publication no. 91-3242.

    Google Scholar 

  13. Phillips J.C., Braun R., Wang W., Gumbart J., Tajkhorshid, E., Villa E., Chipot C., Skeel R.D., Kale L., Schulten K. 2005. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. MacKerel A., Bashford D., Bellott M., Dunbrack R. L., Evanseck J.D., Field M. J., Fischer S., Gao J., Guo H., Ha S., Joseph-McCarthy D., Kuchnir L., Kuczera K., Lau F.T.K., Mattos C., et al. 1998. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 102, 3586–3616.

    Article  Google Scholar 

  15. Foloppe N., MacKerell Jr.A. 2000. All-atom empirical force field for nucleic acids: 1. Parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comput. Chem. 21, 86–104.

    CAS  Google Scholar 

  16. Humphrey W., Dalke A., Schulten K. 1996. VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38.

    Article  CAS  PubMed  Google Scholar 

  17. DePristo M.A., de Bakker P.I., Blundell T.L. 2004. Heterogeneity and inaccuracy in protein structures solved by X-ray crystallography. Structure. 12, 831–838.

    Article  CAS  PubMed  Google Scholar 

  18. Fraser J.S. 2011. Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proc. Natl. Acad. Sci. U. S. A. 108 (39), 16247–16252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Berman H., Westbrook J., Feng Z., Gilliland G., Bhat T., Weissig H. 2000. The protein data bank. Nucleic Acids Res. 28, 235–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Burnley B.T., Afonine P.V., Adams P.D., Gros P. 2012. Modelling dynamics in protein crystal structures by ensemble refinement. eLife, 1, e00311.

    Article  Google Scholar 

  21. Hummer G., Schotte F., Anfinrud P. 2004. A Unveiling functional protein motions with picosecond X-ray crystallography and molecular dynamics simulationsò. Proc. Natl. Acad. Sci. U. S. A. 101, 15330–15334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wall M., van Benschoten A., Sauter N.K., Adams P.D., Fraser J.S., Terwilliger T.C. 2014. Conformational dynamics of a crystalline protein from microsecondscale molecular dynamics simulations and diffuse X-ray scattering. Proc. Natl. Acad. Sci. U. S. A. 111, 17887–17892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stuart L., Hughes J. 2002. Apoptosis and autoimmunity. Nephrol. Dial. Transplant. 17, 697–700.

    Article  PubMed  Google Scholar 

  24. McHugh N.J. 2002). Systemic lupus erythematosus and dysregulated apoptosis: What is the evidence? Rheumatology. 41, 242–245.

  25. Frese S., Diamond B. 2011. Structural modification of DNA: A therapeutic option in SLE? Nat. Rev. Rheumatol. 7, 733–738.

    Article  CAS  Google Scholar 

  26. Su K.Y., Pisetsky D.S. 2009. The role of extracellular DNA in autoimmunity in SLE. Scand. J. Immunol. 70, 175–183.

    Article  CAS  PubMed  Google Scholar 

  27. Pisetsky D.S. 2013. Standardization of anti-DNA antibody assays. Immunol. Res. 56, 420–424.

    Article  CAS  PubMed  Google Scholar 

  28. Yokoyama H., Mizutani R., Satow Y. 2013. Structure of a double-stranded DNA (6-4) photoproduct in complex with the 64M-5 antibody Fab. Acta Cryst. D69, 504–512.

    Google Scholar 

  29. Truglio J.J., Karakas E., Rhau B., Wang H., Dellavecchia M.J., van Houten B., Kisker C. 2006. Structural basis for DNA recognition and processing by UvrB. Nat. Struct. Mol. Biol. 13, 360–364.

    Article  CAS  PubMed  Google Scholar 

  30. Skorvaga M., Theis K., Mandavilli B.S., Kisker C., van Houten B. 2002. The beta-hairpin motif of UvrB is essential for DNA binding, damage processing, and UvrC-mediated incisions. J. Biol. Chem. 277 (2), 1553–1559.

    Article  CAS  PubMed  Google Scholar 

  31. Moolenaar G., Hoglund L., Goosen N. 2001. Clue to damage recognition by UvrB: Residues in the betahairpin structure prevent binding to non-damaged DNA. EMBO J. 20, 6140–6149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rosen A., Casciola-Rosen L. 2009. Autoantigens in systemic autoimmunity: Critical partner in pathogenesis. J. Intern. Med. 265, 625–631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Waters S.T., McDuffie M., Bagavant H., Deshmukh U.S., Gaskin F., Jiang C., Tung K., Fu S.M. 2004. Breaking tolerance to double stranded DNA, nucleosome, and other nuclear antigens is not required for the pathogenesis of lupus glomerulonephritis. J. Exp. Med. 199, 255–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Waris G., Alam K. 2004. Immunogenicity of superoxide radical modified-DNA: Studies on induced antibodies and SLE anti-DNA autoantibodies. Life Sci. 75, 2633–2642.

    Article  CAS  PubMed  Google Scholar 

  35. Evans M., Cooke M., Akil M., Samanta A., Lunec J. 2000. Abberant processing of oxidative DNA damage in systemic lupus erythematosus. Biochem. Biophys. Res. Commun. 273, 894–898.

    Article  CAS  PubMed  Google Scholar 

  36. Kuroda D., Shirai H., Jacobson M.P., Nakamura H. 2012. Computer-aided antibody design. Protein Eng. Des. Sel. 25, 507–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Behrendt M., Partridge L., Griffiths B., Goodfield M. 2003. The role of somatic mutation in determining the affinity of anti-DNA antibodies. Clin. Exp. Immunol. 31, 182–189.

    Article  Google Scholar 

  38. Jang Y.J., Stollar B.D. 2003. Anti-DNA antibodies: aspects of structure and pathogenicity. Cell. Mol. Life Sci. 60, 309–320.

    Article  CAS  PubMed  Google Scholar 

  39. Cerutti M.L., Centeno J.M., Goldbaum F.A., de Prat- Gay G. 2001. Generation of sequence-specific, high affinity anti-DNA antibodies. J. Biol. Chem. 16, 12769–12773.

    Article  Google Scholar 

  40. Kozyr A., Kolesnikov A., Khlyntseva A., Bogun A., Savchenko G., Shemyakin I., Gabibov A.G. 2012. Role of structure-based changes due to somatic mutation in highly homologous DNA-binding and DNA-hydrolyzing autoantibodies exemplified by A23P substitution in the VH domain. Autoimmune Dis. 2012, 683829. doi 10.1155/2012/683829

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zein H., El-Sehemy A., Fares M, ElHefnawi M., da Silva J.T.A., Miyatake K. 2011. Generation, characterization, and docking studies of DNA-hydrolyzing recombinant Fab antibodies. J. Mol. Recognit. 24, 862–874.

    Article  PubMed  Google Scholar 

  42. Avnir Y., Tallarico A.S., Zhu Q., Bennett A.S., Connelly G., Sheehan J., Sui J., Fahmy A., Huang C., Cadwell G., Bankston L.A., McGuire A.T., Stamatatos L., Wagner G., Liddington R.C., Marasco W.A. 2014. Molecular signatures of hemagglutinin stem-directed heterosubtypic human neutralizing antibodies against influenza A viruses. PLoS Pathogens. 10, e1004103.

    Article  Google Scholar 

  43. Akiba H., Tsumoto K. 2015. Thermodynamics of antibody–antigen interaction revealed by mutation analysis of antibody variable regions. J. Biochem. 158 (1), 1–13. doi 10.1093/jb/mvv049

    Article  CAS  PubMed  Google Scholar 

  44. Saul F.A., Alzari P.M. 1996. Crystallographic studies of antigen–antibody interactions. Methods Mol. Biol. 66, 11–23.

    CAS  PubMed  Google Scholar 

  45. Sundberg E.J. 2009. Structural basis of antibody–antigen interactions. Methods Mol. Biol. 524, 23–36.

    Article  CAS  PubMed  Google Scholar 

  46. Krishnan M.R., Marion T.N. 1998. Comparison of the frequencies of arginines in heavy chain CDR3 of antibodies expressed in the primary B-cell repertoires of autoimmune-prone and normal mice. Scand. J. Immunol. 48, 223–232.

    Article  CAS  PubMed  Google Scholar 

  47. Rahman A., Giles I., Haley J., Isenberg D. 2002. Systematic analysis of sequences of anti-DNA antibodies: Relevance to theories of origin and pathogenicity. Lupus. 11, 807–823.

    Article  CAS  PubMed  Google Scholar 

  48. Collis A. V., Brouwer A. P., Martin A. C. 2003. Analysis of the antigen combining site: Correlations between length and sequence composition of the hypervariable loops and the nature of the antigen. J. Mol. Biol. 325, 337–354.

    Article  CAS  PubMed  Google Scholar 

  49. Zheng N., Wilson K., Wang X., Boston A., Kolar G., Jackson S.M., Liu Y.-J., Pascual V., Capra J., Wilson P.C. 2004. Human immunoglobulin selection associated with class switch and possible tolerogenic origins for Cd class-switched B cells. J. Clin. Invest. 113, 1188–1201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Akberova.

Additional information

Original Russian Text © N.I. Akberova, A.A. Zhmurov, T.A. Nevzorova, R.I. Litvinov, 2016, published in Molekulyarnaya Biologiya, 2016, Vol. 50, No. 3, pp. 509–519.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akberova, N.I., Zhmurov, A.A., Nevzorova, T.A. et al. Molecular dynamics of immune complex of photoadduct-containing DNA with Fab-Anti-DNA antibody fragment. Mol Biol 50, 442–451 (2016). https://doi.org/10.1134/S0026893316020023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893316020023

Keywords

Navigation