Skip to main content
Log in

Effect of amino acid substitutions in the small subunit of the avian H5N2 influenza virus hemagglutinin on selection of the mutants, resistant to neutralizing monoclonal antibodies

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Mutations in the hemagglutinin (HA) protein molecule of influenza A viruses associated with the virus’s resistance to physical and chemical factors can play important roles in the selection of influenza variants during circulation in nature. In this study, we examined escape mutants of the A/mallard/Pennsylvania/10218/84 (H5N2) influenza virus, which were selected with a monoclonal antibody specific to an epitope in the large HA subunit (HA1). We obtained escape mutant m4F11(4), which carries a single amino acid substitution S145P1 in the HA1 subunit and two other mutants, m4G10(10) and m4G10(6), which accumulated additional mutations in the small subunit (HA2), i.e., L124F2 and L124F2+N79D2, respectively. We demonstrate that amino acid substitutions in HA2 of m4G10(10) and m4G10(6) viruses can compensate for the negative effect of the S145P1 mutation, which manifested in a significant increase in the capacity for viral replication at the early stages of infection in chicken embryos, as well as in growth in the HA thermostability compared with the m4F11(4) escape mutant. We propose that these variations in phenotypic properties, which provide advantages during viral replication, play a role in the positive selection factor and are retained in the viral population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Claas E.C., de Jong J.C., van Beek R., Rimmelzwaan G.F., Osterhaus A.D. 1998. Human influenza virus A/HongKong/156/97 (H5N1) infection. Vaccine. 16, 977–978.

    Article  CAS  PubMed  Google Scholar 

  2. Subbarao K., Klimov A., Katz J., Regnery H., Lim, W. Hall H., Perdue M., Swayne D., Bender C. 1998. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science. 279, 393–396.

    Article  CAS  PubMed  Google Scholar 

  3. Kaverin N.V., Rudneva I.A., Ilyushina N.A., Varich N.L., Lipatov A.S., Smirnov Y.A., Govorkova E.A., Gitelman A.K., Lvov D.K., Webster R.G. 2002. Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants. J. Gen. Virol. 83, 2497–2505.

    CAS  PubMed  Google Scholar 

  4. Rudneva I.A., Kushch A.A., Masalova O.V., Timofeeva T.A., Klimova R.R., Shilov A.A., Ignatieva A.V., Krylov P.S., Kaverin N.V. 2010. Antigenic epitopes in the hemagglutinin of Qinghai-type influenza H5N1 virus. Viral. Immunol. 23, 181–187.

    Article  CAS  PubMed  Google Scholar 

  5. Smirnov Y.A., Lipatov A.S., Van Beek R., Gitelman A.K., Osterhaus A.D., Claas E.C. 2000. Characterization of adaptation of an avian influenza A (H5N2) virus to a mammalian host. Acta Virol. 44, 1–8.

    CAS  PubMed  Google Scholar 

  6. Rudneva I.A., Timofeeva T.A., Ignatieva A.V., Shilov A.A., Krylov P.S., Ilyushina N.A., Kaverin N.V. 2013. Pleiotropic effects of hemagglutinin amino acid substitutions of H5 influenza escape mutants. Virology. 447, 233–239.

    Article  CAS  PubMed  Google Scholar 

  7. Shubladzde A.K., Gaidamovich S.Ya. 1964. Kratkii kurs prakticheskoi virusologii (A Concise Course in Practical Virology). Moscow: Medgiz.

    Google Scholar 

  8. Kushch A.A., Klimova R.R., Masalova O.V., Fedorova N.E., Botikov A.G., Fediakina I.T., Burtseva E.I., Isaeva E.I., Deriabin P.G., L’vov D.K. 2008. Monoclonal antibodies to highly pathogenic avian influenza A(H5N1) strain isolated in the Russian Federation: Development and properties. Vopr. Virusol. 53, 9–14.

    CAS  PubMed  Google Scholar 

  9. Masalova O.V., Klimova R.R., Chichev E.V., Fediakina I.T., Loginova S.Y., Borisevich S.V., Bondarev V.P., Deryabin P.G., Lvov D.K., Kushch A.A. 2011. Development of monoclonal antibodies to highly pathogenic avian influenza H5N1 virus and their application to diagnostics, prophylaxis, and therapy. Acta Virol. 55, 3–14.

    Article  CAS  PubMed  Google Scholar 

  10. Webster R.G., Laver W.G. 1980. Determination of the number of nonoverlapping antigenic areas on Hong Kong (H3N2) influenza virus hemagglutinin with monoclonal antibodies and the selection of variants with potential epidemiological significance. Virology. 104, 139–148.

    Article  CAS  PubMed  Google Scholar 

  11. Rogers G.N., Pritchett T.J., Lane J.L., Paulson J.C. 1983. Differential sensitivity of human, avian, and equine influenza A viruses to a glycoprotein inhibitor of infection: selection of receptor specific variants. Virology. 131, 394–408.

    Article  CAS  PubMed  Google Scholar 

  12. Reed L.J., Muench H. 1938. A simple method of estimating fifty per cent endpoints. Am. J. Hygiene. 27, 493–497.

    Google Scholar 

  13. Philpott M., Easterday B.C., Hinshaw V. 1989. Neutralizing epitopes of the H5 hemagglutinin from a virulent avian influenza virus and their relationships to pathogenicity. J. Virol. 63, 3453–3458.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Krenn B.M., Egorov A., Romanovskaya-Romanko E., Wolschek M., Nakowitsch S., Ruthsatz T., Kiefmann B., Morokutti A., Humer J., Geiler J., Cinatl J., Michaelis M., Wressnigg N., Sturlan S., Ferko B., Batishchev O.V., Indenbom A.V., Zhu R., Kastner M., Hinterdorfer P., Kiselev O., Muster T., Romanova J. 2011. Single HA2 mutation increases the infectivity and immunogenicity of a live attenuated H5N1 intranasal influenza vaccine candidate lacking NS1. PLoS ONE. 6, 1–12.

    Article  Google Scholar 

  15. Wiley D.C., Wilson I.A., Skehel J.J. 1981. Structural identification of the antibody-binding sites of Hong Kong influenza hemagglutinin and their involvement in antigenic variation. Nature. 289, 373–378.

    Article  CAS  PubMed  Google Scholar 

  16. Wilson I.A., Skehel J.J., Wiley D.C. 1981. Structure of the hemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature. 289, 366–373.

    Article  CAS  PubMed  Google Scholar 

  17. Stevens J., Blixt O., Tumpey T.M., Taubenberger J.K., Paulson J.C., Wilson I.A. 2006. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science. 312, 404–410.

    Article  CAS  PubMed  Google Scholar 

  18. Casali M., Banta S., Zambonelli C., Megeed Z., Yarmush M.L. 2008. Site-directed mutagenesis of the hinge peptide from the hemagglutinin protein: enhancement of the pH-responsive conformational change. Protein Eng. Des. Sel. 21, 395–404.

    Article  CAS  PubMed  Google Scholar 

  19. Reed M.L., Yen H.L., DuBois R.M., Bridges O.A., Salomon R., Webster R.G., Russell C.J. 2009. Amino acid residues in the fusion peptide pocket regulate the pH of activation of the H5N1 influenza virus hemagglutinin protein. J. Virol. 84, 3568–3580.

    Article  Google Scholar 

  20. Reed M.L., Bridges O.A., Seiler P., Kim J.K., Yen H.L., Salomon R., Govorkova E.A., Webster R.G., Russell C.J. 2010. The pH of activation of the hemagglutinin protein regulates H5N1 influenza virus pathogenicity and transmissibility in ducks. J. Virol. 84, 1527–1535.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Il’iushina N.A., Rudneva I.A., Varich N.L., Lipatov A.S., Webster R.G., Kaverin N.V. 2003. Antigenic structure of influenza A virus subtype H5 hemagglutinin: Mechanism of acquiring stability to monoclonal antibodies in escape-mutants. Mol. Genet. Mikrobiol. Virusol. 1, 40–45.

    Google Scholar 

  22. Kordyukova L.V., Serebryakova M.V., Polyansky A.A., Kropotkina E.A., Alexeevski A.V., Veit M., Efremov R.G., Filippova I.Y., Baratova L.A. 2011. Linker and/or transmembrane regions of influenza A/Group-1, A/Group-2, and type B virus hemagglutinins are packed differently within trimers. Biochim. Biophys. Acta. 1808, 1843–1854.

    Article  CAS  PubMed  Google Scholar 

  23. Xu R., Wilson I.A. 2011. Structural characterization of an early fusion intermediate of influenza virus hemagglutinin. J. Virol. 85, 5172–5182.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Goh G.K., Dunker A.K., Uversky V.N. 2009. Protein intrinsic disorder and influenza virulence: The 1918 H1N1 and H5N1 viruses. Virol. J. 6, 1–12.

    Article  Google Scholar 

  25. DuBois R.M., Zaraket H., Reddivari M., Heath R.J., White S.W., Russell C.J. 2011. Acid stability of the hemagglutinin protein regulates H5N1 influenza virus pathogenicity. PLoS Pathogens. 7, 1–12.

    Article  Google Scholar 

  26. Timofeeva T.A., Rudneva I.A., Mochalova L.V., Bovin N.V., Kaverin N.V. 2013. Effect of mutations changing the antigenic specificity on the receptorbinding activity of the influenza virus hemagglutinin of H1 and H5 subtypes. Vopr. Virusol. 58, 24–27.

    CAS  PubMed  Google Scholar 

  27. Kaverin N.V., Rudneva I.A., Ilyushina N.A., Lipatov A.S., Krauss S., Webster R.G. 2004. Structural differences among hemagglutinins of influenza A virus subtypes are reflected in their antigenic architecture: Analysis of H9 escape mutants. J. Virol. 78, 240–249.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ignatieva.

Additional information

Dedicated to the Enlightened Memory of Professor Nikolai Veniaminovich Kaverin, Member of the Russian Academy of Sciences

Original Russian Text © A.V. Ignatieva, T.A. Timofeeva, I.A. Rudneva, A.A. Shilov, O.V. Masalova, R.R. Klimova, A.A. Kushch, N.A. Ilyushina, N.V. Kaverin, 2015, published in Molekulyarnaya Biologiya, 2015, Vol. 49, No. 2, pp. 342–350.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatieva, A.V., Timofeeva, T.A., Rudneva, I.A. et al. Effect of amino acid substitutions in the small subunit of the avian H5N2 influenza virus hemagglutinin on selection of the mutants, resistant to neutralizing monoclonal antibodies. Mol Biol 49, 303–311 (2015). https://doi.org/10.1134/S002689331502003X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689331502003X

Keywords

Navigation