Skip to main content
Log in

Length polymorphism of the B2-VNTR minisatellite repeat of the bradykinin B2 receptor gene in healthy Russians and patients with coronary heart disease

  • Genomics. Transcriptomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Bradykinin B2 receptor is involved in many processes, including the regulation of blood pressure and smooth muscle contraction, vasodilation, inflammation, edema, cell proliferation, and pain. This receptor attracts special attention as one of the factors that have cardioprotective and infarct-limiting effects. Certain genetic variants of the coding and noncoding regions of the bradykinin B2 receptor gene (BDKRB2) may play a role in modulating its expression. The 3′-untranslated region of BDKRB2 exon 3 harbors a minisatellite repeat (B2-VNTR), which affects the mRNA stability. Hence, it is of interest to study a possible association of B2-VNRT alleles with various forms of coronary heart disease (CHD). In our work the allele and genotype frequency distributions of B2-VNTR were compared between healthy individuals and patients with CHD (angina pectoris or myocardial infarction (MI)) of the Russian ethnic group. Based on its length polymorphism, B2-VNTR was classed with low-polymorphic non-hypervariable minisatellites. Three B2-VNTR alleles, which consisted of 43, 38, and 33 repeats, were observed in all investigated cohorts. The alleles with 43 and 33 repeats were the most prevalent. The allele and genotype frequencies of B2-VNTR did not significantly differ between males and females in control group, and also between healthy males and males with angina pectoris or MI. Thus, B2-VNTR length polymorphism was not associated with these clinical forms of CHD in males. However, we do not exclude the possibility of an association of the short B2-VNTR alleles (38 and 33 repeats) with a cardioprotective effect in females with CHD. This hypothesis requires further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PCR:

polymerase chain reaction

SNP:

single nucleotide polymorphism

CHD:

coronary heart disease

MI:

myocardial infarction

SD:

standard deviation

References

  1. WHO. 2013. Bulletin of the World Health Organization, no. 317.

    Google Scholar 

  2. Lilly L.S., et al. 2005. Pathophysiology of Heart Disease, 4th ed. Baltimore: Lippincott Williams & Wilkins.

    Google Scholar 

  3. Marzilli M., Merz C.N.B., Boden W.E., Bonow R.O., Capozza P.G., Chilian W.M., DeMaria A.N., Guarini G., Huqi A., Morrone D., Patel M.R., Weintraub W.S. 2012. Obstructive coronary atherosclerosis and ischemic heart disease: An elusive link! J. Am. Coll. Cardiol. 60, 951–956.

    Article  PubMed  Google Scholar 

  4. Ivanov S.N., Starovoitova E.A., Ogorodova L.M., Volkova T.G. 2007. Role of endothelial dysfunction in genesis of cardiovacular pathology. Sib. Med. Zh. 1, 99–104.

    Google Scholar 

  5. Popova A.A., Berezikova E.N., Mayanskaya S.D., Yakovleva N.F. 2010. Endothelial dysfunction and mechanisms of its development. Sib. Med. Obozr. 4, 7–11.

    Google Scholar 

  6. Kozlovskii V.I. 2011. Mekhanizmy regulyatsii koronarnogo krovotoka, oposredovannoi endotelial’nymi sosudorasshiryayushchimi faktorami (Mechanisms of Coronary Blood Flow Regulation Mediated by Endothelial Vasodilating Factors). Grodno: Grodn. Gos. Med. Univ.

    Google Scholar 

  7. Marcondes S., Antunes E. 2005. The plasma and tissue kininogen-kallikrein-kinin system: Role in the cardiovascular system. Curr. Med. Chem. Cardiovasc. Hematol. Agents. 3, 33–44.

    Article  CAS  PubMed  Google Scholar 

  8. Kränkel N., Kuschnerus K., Müller M., Speer T., Mocharla P., Madeddu P., Bader M., Lüscher T.F., Landmesser U. 2013. Novel insights into the critical role of bradykinin and the kinin B2 receptor for vascular recruitment of circulating endothelial repair-promoting mononuclear cell subsets: Alterations in patients with coronary disease. Circulation. 127, 594–603.

    Article  PubMed  Google Scholar 

  9. Sheng Z., Yao Y., Li Y., Yan F., Huang J., Ma G. 2013. Bradykinin preconditioning improves therapeutic potential of human endothelial progenitor cells in infarcted myocardium. PLoS ONE. 8, e81505.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Andronati S.A., Kabanova T.A., Pavlovskii V.I., Andronati K.S., Bachinskii S.Yu. 2009. Bradykinin receptor ligands as potential analgesic and antiinflammatory agents. Zh. Org. Farm. Khim. (Ukraine). 4, 70–76.

    Google Scholar 

  11. Bockmann S., Paegelow I. 2000. Kinins and kinin receptors: Importance for the activation of leukocytes. J. Leukoc. Biol. 68, 587–592.

    CAS  PubMed  Google Scholar 

  12. Bronner C. 2005. Is the upregulation of bradykinin B2 receptors by TGF-beta 1 one of the missing pieces in the “airway hyperresponsiveness” puzzle? Am. J. Physiol. Lung Cell. Mol. Physiol. 289, 509–510.

    Article  Google Scholar 

  13. Costa-Neto C.M., Dillenburg-Pilla P., Heinrich T.A., Parreiras-e-Silva L.T., Pereira M.G., Reis R.I., Souza P.P. 2008. Participation of kallikrein-kinin system in different pathologies. Int. Immunopharm. 8, 135–142.

    Article  CAS  Google Scholar 

  14. Hall J.M. 1997. Bradykinin receptors. Gen. Pharmacol. 28, 1–6.

    Article  CAS  PubMed  Google Scholar 

  15. Tran Q.-K., Ohashi K., Watanabe H. 2000. Calcium signaling in endothelial cells. Cardiovasc. Res. 48, 13–22.

    Article  CAS  PubMed  Google Scholar 

  16. Figueroa C.D., Marchant A., Novoa U., Förstermann U., Jarnagin K., Schölkens B., Müller-Esterl W. 2001. Differential distribution of bradykinin B2 receptors in the rat and human cardiovascular system. Hypertension. 37, 110–120.

    Article  CAS  PubMed  Google Scholar 

  17. Prado G.N., Taylor L., Zhou X., Ricupero D., Mierke D.F., Polgar P. 2002. Mechanisms regulating the expression, self-maintenance, and signaling-function of the bradykinin B2 and B1 receptors. J. Cell. Physiol. 193, 275–286.

    Article  CAS  PubMed  Google Scholar 

  18. Leeb-Lundberg L.M., Marceau F., Muller-Esterl W., Müller-Esterl W., Pettibone D.J., Zuraw B.L. 2005. International Union of Pharmacology. XLV. Classification of the kinin receptor family: From molecular mechanisms to pathophysiological consequences. Pharmacol. Rev. 57, 27–77.

    Article  CAS  PubMed  Google Scholar 

  19. Tschöpe C., Heringer-Walther S., Walther T. 2000. Regulation of the kinin receptors after induction of myocardial infarction: A mini-review. Braz. J. Med. Biol. Res. 33, 701–708.

    Article  PubMed  Google Scholar 

  20. Kuoppala A., Shiota N., Kokkonen J.O., Liesmaa I., Kostner K., Mäyränpää M., Kovanen P.T., Lindstedt K.A. 2002. Down-regulation of cardioprotective bradykinin type-2 receptors in the left ventricle of patients with end-stage heart failure. J. Am. Coll. Cardiol. 40, 119–125.

    Article  CAS  PubMed  Google Scholar 

  21. Fu Y., Katsuya T., Matsuo A., Yamamoto K., Akasaka H., Takami Y., Iwashima Y., Sugimoto K., Ishikawa K., Ohishi M., Rakugi H., Ogihara T. 2004. Relationship of bradykinin B2 receptor gene polymorphism with essential hypertension and left ventricular hypertrophy. Hypertens. Res. 27, 933–938.

    Article  CAS  PubMed  Google Scholar 

  22. Kuhr F., Lowry J., Zhang Y., Brovkovych V., Skidgel R.A. 2010. Differential regulation of inducible and endothelial nitric oxide synthase by kinin B1 and B2 receptors. Neuropeptides. 44, 145–154.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Maslov L.N., Krylatov A.V., Gorbunov A.S., Tsibul’nikov S.Yu., Sementsov A.S. 2012. Vasoprotective effect of classical ischemic preconditioning. Sib. Med. Zh. 27(1), 9–16.

    Google Scholar 

  24. Maslov L.N., Lishmanov Yu.B. 2012. Cardiac ischemic postconditioning: 2. Sib. Med. Zh. 27(4), 7–12.

    Google Scholar 

  25. Duka A., Kintsurashvili E., Duka I., Ona D., Hopkins T.A., Bader M., Gavras I., Gavras H. 2008. Angiotensin-converting enzyme inhibition after experimental myocardial infarct: Role of the kinin B1 and B2 receptors. Hypertension. 51, 1352–1357.

    Article  CAS  PubMed  Google Scholar 

  26. Manolis A.J., Marketou M.E., Gavras I., Gavras H. 2010. Cardioprotective properties of bradykinin: Role of the B(2) receptor. Hypertens. Res. 33, 772–777.

    Article  CAS  PubMed  Google Scholar 

  27. Marketou M., Kintsurashvili E., Papanicolaou K.N., Lucero H.A., Gavras I., Gavras H. 2010. Cardioprotective effects of a selective B(2) receptor agonist of bradykinin post-acute myocardial infarct. Am. J. Hypertens. 23, 562–568.

    Article  CAS  PubMed  Google Scholar 

  28. Shlyakhto E.V., Nifontov E.M., Galagudza M.M. 2007. Restriction of ischemic-reperfusion damage to the myocardium by means of pre- and postconditioning: Molecular mechanisms and and targets for pharmacotherapy. Kreativnaya Kardiol. 1–2, 75–101.

    Google Scholar 

  29. Duchene J., Bader M. 2010. Bradykinin B2 receptor agonism: A novel therapeutic strategy for myocardial infarction? Am. J. Hypertens. 23, 459.

    Article  PubMed  Google Scholar 

  30. Potier L., Waeckel L., Vincent M.P., Chollet C., Gobeil F.Jr., Marre M., Bruneval P., Richer C., Roussel R., Alhenc-Gelas F., Bouby N. 2013. Selective kinin receptor agonists as cardioprotective agents in myocardial ischemia and diabetes. J. Pharmacol. Exp. Ther. 346, 23–30.

    Article  CAS  PubMed  Google Scholar 

  31. Geneticheskii pasport-osnova individual’noi i prediktivnoi meditsiny (Genetic Passport: A Basis for Individual and Predictive Medicine), Ed. Baranov V.S. St. Petersburg: N-L, 2009.

    Google Scholar 

  32. Aoki S., Mukae S., Itoh S., Sato R., Nishio K., Ueda H., Iwata T., Katagiri T. 2001. Genetic background in patients with acute myocardial infarction. Jpn. Heart J. 42, 15–28.

    Article  CAS  PubMed  Google Scholar 

  33. Schunkert H., Erdmann J., Samani N.J. 2010. Genetics of myocardial infarction: A progress report. Eur. Heart J. 31, 918–925.

    Article  PubMed  Google Scholar 

  34. Damani S.B., Topol E.J. 2011. Emerging genomic applications in coronary artery disease. J. Am. Coll. Cardiol. Intv. 4, 473–482.

    Article  Google Scholar 

  35. Kathiresan S., Srivastava D. 2012. Genetics of human cardiovascular disease. Cell. 148, 1242–1257.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Agapkina Yu.V., Nikitin A.G., Brovkin A.N., A. A. Pushkov, M. A. Evdokimova, Aseycheva O.Yu., Osmolovskaya V.S., Minushkina L.O., Kochkina M.S., Selezneva N.D., Dankovtseva E.N., Chumakova O.S., Baklanova T.N., Talyzin P.A., Reznichenko N.E., Donetskaya O.P., Tereschenko S.N., Krasil’nikova E.S., Dzhaiani N.A., Akatova E.V., Glezer M.G., Galyavich A.S., Zakirova V.B., Koziolova N.A., Timofeeva I.V., Yagoda A.V., Boyeva O.I., Katelnitskaya L.I., Horolets E.V., Shlyk S.V., Volkova E.G., Margaryan M.P., Guz I.O., Konstantinov V.O., Timofeyeva A.N., Sidorenko B.A., Zateyshchikov D.A., Nosikov V.V. 2010. Association of the polymorphic markers G(-455)A in the FGB gene and C (-1654)T in the PROC gene with hereditary predisposition to unfavorable outcome in patients with history of acute coronary syndrome. Mol. Biol. (Moscow). 44, 541–545.

    Article  CAS  Google Scholar 

  37. Sudomoina M.A., Sukhinina T.S., Barsova R.M., Favorov A.V., Sakhnovich R.M., Titov B.V., Matveeva N.A., Rybalkin I.N., Vlasik T.N., Ochs M.F., Ruda M.Y., Favorova O.O. 2010. Complex analysis of association of inflammation genes polymorphisms with myocardial infarction. Mol. Biol. (Moscow). 44, 407–414.

    Article  CAS  Google Scholar 

  38. Barsova R.M., Titov B.V., Matveeva N.A., Favorov A.V., Sukhinina T.S., Shahnovich R.M., Ruda M.Ia., Favorova O.O. 2012. Contribution of the TGFB1 gene to myocardial infarction susceptibility. Acta Naturae. 4, 74–79.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Narne P., Ponnaluri K.C., Singh S., Siraj M., Ishaq M. 2012. Relationship between angiotensin converting enzyme gene insertion/deletion polymorphism, angiographically defined coronary artery disease and myocardial infarction in patients with type 2 diabetes mellitus. J. Renin-Angiotensin-Aldosterone Syst. 13, 478–486.

    Article  CAS  PubMed  Google Scholar 

  40. Zigraa A.-M., Rallidis L.S., Anastasiou G., Merkouri E., Gialeraki A. 2013. eNOS gene variants and the risk of premature myocardial infarction. Disease Markers. 34, 431–436.

    Article  Google Scholar 

  41. Mustafina O.E., Shagisultanova E.I., Nasybullin T.R., Tuktarova I.A., Bikmeeva A.M., Poluydova O.N., Khusnutdinova E.K. 2001. Endothelial nitric oxide synthase gene minisatellite polymorphism in populations of the Volga-Ural region and analysis of its association with myocardial infarction and essential hypertension. Russ. J. Genet. 37, 546–552.

    Article  CAS  Google Scholar 

  42. Grigor’eva L.V., Fedorova S.A., Mustafina O.E., Khusnutdinova E.K. 2006. VNTR polymorphism in intron 4 of endothelial nitroc oxide synthase gene and analysis of its association with myocardial infarction in the Yakut population. Med. Genet. 5, 40–44.

    Google Scholar 

  43. Friedl W., Ludwig E.H., Paulweber B., Sandhofer F., McCarthy B.J. 1990. Hypervariability in a minisatellite 3’ of the apolipoprotein B gene in patients with coronary heart disease compared with normal controls. J. Lipid Res. 31, 659–665.

    CAS  PubMed  Google Scholar 

  44. Kamstrup P.R., Tybjaerg-Hansen A., Steffensen R., Nordestgaard B.G. 2008. Pentanucleotide repeat polymorphism, lipoprotein (a) levels, and risk of ischemic heart disease. J. Clin. Endocrinol. Metab. 93, 3769–3776.

    Article  CAS  PubMed  Google Scholar 

  45. Abolhalaj M., Amoli M.M., Amiri P. 2013. eNOS gene variant in patients with coronary artery disease. J. Biomark. 2013, Article ID 403783.

    Google Scholar 

  46. Eggerickx D., Raspe E., Bertrand D., Vassart G., Parmentier M. 1992. Molecular cloning, functional expression and pharmacological characterization of a human bradykinin B2 receptor gene. Biochem. Biophys. Res. Commun. 187, 1306–l313.

    Article  CAS  PubMed  Google Scholar 

  47. Powell S., Slynn G., Thomas C., Hopkins B., Briggs I., Graham A. 1993. Human bradykinin B2 receptor: Nucleotide sequence analysis and assignment to chromosome 14. Genomics. 15, 435–438.

    Article  CAS  PubMed  Google Scholar 

  48. Ma J.-X., Wang D.-Z., Ward D.C., Chen L., Dessai T., Chao J., Chao L. 1994. Structure and chromosome localization of the gene (BDKRB2) encoding human bradykinin B2 receptor. Genomics. 23, 362–369.

    Article  CAS  PubMed  Google Scholar 

  49. Kammerer S., Braun A., Arnold N., Roscher A.A. 1995. The human bradykinin B2 receptor gene: Full length cDNA, genomic organization and identification of the regulatory region. Biochem. Biophys. Res. Commun. 211, 226–233.

    Article  CAS  PubMed  Google Scholar 

  50. Braun A., Kammerer S., Böhme E., Müller B., Roscher A.A. 1995. Identification of polymorphic sites of the human bradykinin B2 receptor gene. Biochem. Biophys. Res. Commun. 211, 234–240.

    Article  CAS  PubMed  Google Scholar 

  51. Braun A., Kammerer S., Maier E., Böhme E., Roscher A.A. 1996. Polymorphisms in the gene for the human B2-bradykinin receptor. New tools in assessing a genetic risk for bradykinin-associated diseases. Immunopharmacology. 33, 32–35.

    Article  CAS  PubMed  Google Scholar 

  52. Schneider O.V., Obrezan A.G., Makeeva E.D., Stupnitsky A.A., Spivak I.M., Mikhelson V.M. 2004. Association of angiotensin-converting enzyme, angiotensinogen, endothelial NO-synthase, and bradykinin receptor B2 gene polymorphisms with the cardiovascular structure and function in hypertensive patients and athletes. Tsitologiya. 46, 69–78.

    CAS  Google Scholar 

  53. Glotov A.S., Ivaschenko T.E., Obraztsova G.I., Nasedkina T.V., Baranov V.S. 2007. Association of permanent arterial hypertension with the renin-angiotensin and kinin-bradykinin system genes in children. Mol. Biol. (Moscow). 41, 14–21.

    Article  CAS  Google Scholar 

  54. Erdmann J., Hegemann N., Weidemann A., Kallisch H., Hummel M., Hetzer R., Fleck E., Regitz-Zagrosek V. 1998. Screening the human bradykinin B2 receptor gene in patients with cardiovascular diseases: Identification of a functional mutation in the promoter and a new coding variant (T21M). Am. J. Med. Genet. 80, 521–525.

    Article  CAS  PubMed  Google Scholar 

  55. Dhamrait S.S., Payne J.R., Li P., Jones A., Toor I.S., Cooper J.A., Hawe E., Palmen J.M., Wootton P.T., Miller G.J., Humphries S.E., Montgomery H.E. 2003. Variation in bradykinin receptor genes increases the cardiovascular risk associated with hypertension. Eur. Heart J. 24, 1672–1680.

    Article  CAS  PubMed  Google Scholar 

  56. Fischer M., Lieb W., Marold D., Berthold M., Baessler A., Lowel H., Hense H.W., Hengstenberg C., Holmer S., Schunkert H., Erdmann J. 2004. Lack of association of a 9 bp insertion/deletion polymorphism within the bradykinin 2 receptor gene with myocardial infarction. Clin. Sci. (London). 107, 505–511.

    Article  CAS  Google Scholar 

  57. Cui J., Melista E., Chazaro I., Zhang Y., Zhou X., Manolis A.J., Baldwin C.T., Destefano A.L., Gavras H. 2005. Sequence variation of bradykinin receptors B1 and B2 and association with hypertension. J. Hypertens. 23, 55–62.

    Article  CAS  PubMed  Google Scholar 

  58. Bhupatiraju C., Patkar S., Pandharpurkar D., Joshi S., Tirunilai P. 2012. Association and interaction of −58C>T and ±9 bp polymorphisms of BDKRB2 gene causing susceptibility to essential hypertension. Clin. Exp. Hypertens. 34, 230–235.

    Article  CAS  PubMed  Google Scholar 

  59. Li Y.-Y., Zhang H., Xu J., Qian Y., Lu X.Z., Yang B., Chen M., Yang Z.J., Cao K.J. 2012. Bradykinin B2 receptor 258T/C gene polymorphism and essential hypertension: A meta-analysis. PLoS ONE. 7. e43068.

  60. Nakamura Y., Koyama K., Matsushima M. 1998. VNTR (variable number of tandem repeat) sequences as transcriptional, translational, or functional regulators. J. Hum. Genet. 43, 149–152.

    Article  CAS  PubMed  Google Scholar 

  61. Klenova E., Scott A.C., Roberts J., Shamsuddin S., Lovejoy E.A., Bergmann S., Bubb V.J., Royer H.D., Quinn J.P. 2004. YB-1 and CTCF differentially regulate the 5-HTT polymorphic intron 2 enhancer which predisposes to a variety of neurological disorders. J. Neurosci. 24, 5966–5973.

    Article  CAS  PubMed  Google Scholar 

  62. Tschöpe C., Heringer-Walther S., Koch M., Spillmann F., Wendorf M., Hauke D., Bader M., Schultheiss H.P., Walther T. 2000. Myocardial bradykinin B2 receptor expression at different time points after induction of myocardial infarction. J. Hypertens. 18, 223–228.

    Article  PubMed  Google Scholar 

  63. Sambrook J., Fritsch E.F., Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.

    Google Scholar 

  64. Ayala F.J., Kiger J.A. 1984. Modern Genetics, 2nd ed. Davis, CA: Benjamin/Cummings.

    Google Scholar 

  65. Kusser B., Braun A., Praun M., Illi S., von Mutius E., Roscher A.A. 2001. Polymorphisms in the bradykinin B2 receptor gene and childhood asthma. Biol. Chem. 382, 885–889.

    Article  CAS  PubMed  Google Scholar 

  66. Denoeud F., Vergnaud G., Benson G. 2003. Predicting human minisatellite polymorphism. Genome Res. 13, 856–867.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Guella I., Rimoldi V., Asselta R. 2009. Myocardial infarction and coronary artery disease association and functional analyses of MEF2A as a susceptibility gene for remature. Circ. Cardiovasc. Genet. 2, 165–172.

    Article  CAS  PubMed  Google Scholar 

  68. Liu Y., Niu W., Wu Z., Su X., Chen Q., Lu L., Jin W. 2012. Variants in exon 11 of MEF2A gene and coronary artery disease: Evidence from a case-control study, systematic review, and meta-analysis. PLoS ONE. 7, e31406.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Lebedeva A.Yu., Klykov L.L., Zaitseva V.V. 2011. Ischemic heart disease in young women: Problems of diagnosis and prevention. Ross. Kardiol. Zh. 6, 90–97.

    Google Scholar 

  70. Mokhort T.V. 2011. Menopausal metabolic syndrome: Substantiation and possibilities for correction. Reprod. Zdorov’e. 2, 123–133.

    Google Scholar 

  71. Golditz G.A., Willett W.C., Stampfer M.J., Rosner B., Speizer F.E., Hennekens C.H. 1987. Menopause and the risk of coronary heart disease in women. N. Engl. J. Med. 316, 1105–1110.

    Article  Google Scholar 

  72. Wenger N.K., Speroff L., Packard B. 1993. Cardiovascular health and disease in women. N. Engl. J. Med. 329, 247–256.

    Article  CAS  PubMed  Google Scholar 

  73. Rosengren A., Wallentin L., Gitt A.K., Behar S., Battler A., Hasdai D. 2004. Sex, age, and clinical presentation of acute coronary syndromes. Eur. Heart J. 25, 663–670.

    Article  PubMed  Google Scholar 

  74. Zamorano R., Suchindran S., Gainer J.V. 2006. 3′-Untranslated region of the type 2 bradykinin receptor is a potent regulator of gene expression. Am. J. Physiol. Renal Physiol. 290, 456–464.

    Article  Google Scholar 

  75. Sumino H., Ichikawa S., Kanda T., Sakamaki T., Nakamura T., Sato K., Kobayashi I., Nagai R. 1999. Hormone replacement therapy in postmenopausal women with essential hypertension increases circulating plasma levels of bradykinin. Am. J. Hypertens. 12, 1044–1047.

    Article  CAS  PubMed  Google Scholar 

  76. Baker L.K., Meldrum K., Wang M., Sankula R., Vanam R., Raiesdana A., Tsai B., Hile K., Brown J.W., Meldrum D.R. 2003. The role of estrogen in cardiovascular disease. J. Surg. Res. 115, 325–344.

    Article  CAS  PubMed  Google Scholar 

  77. Liu P.Y., Death A.K., Handelsman D.J. 2003. Androgens and cardiovascular disease. Endocr. Rev. 24, 313–340.

    Article  CAS  PubMed  Google Scholar 

  78. Maslennikova Yu.L., Mikhailov P.V. 2011. Comparative analysis of bradykinin receptor gene (BDKRB 2) polymorphism in women and men with different unspecific work capacities. Yarosl. Ped. Vestn. 3, 113–117.

    Google Scholar 

  79. Madeddu P., Emanueli C., Varoni M.V., Varoni M.V., Demontis M.P., Anania V., Glorioso N., Chao J. 1997. Regulation of bradykinin B2-receptor expression by oestrogen. Br. J. Pharmacol. 121, 1763–1769.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. O. Suchkova.

Additional information

Original Russian Text © I.O. Suchkova, L.I. Pavlinova, E.E. Larionova, N.V. Alenina, K.V. Solovyov, T.V. Baranova, E.V. Belotserkovskaya, L.K. Sasina, M. Bader, A.D. Denisenko, O.E. Mustafina, E.K. Khusnutdinova, E.L. Patkin, 2014, published in Molekulyarnaya Biologiya, 2014, Vol. 48, No. 5, pp. 752–762.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suchkova, I.O., Pavlinova, L.I., Larionova, E.E. et al. Length polymorphism of the B2-VNTR minisatellite repeat of the bradykinin B2 receptor gene in healthy Russians and patients with coronary heart disease. Mol Biol 48, 655–663 (2014). https://doi.org/10.1134/S0026893314050136

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893314050136

Keywords

Navigation