Skip to main content
Log in

Expression of sphingomyelin synthase 1 (SGMS1) gene varies in human lung and esophagus cancer

  • Genomics. Transcriptomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The investigation of molecular mechanisms contributing to cancer progression is the burning problem of current research. Considerable attention has been focused on the study of gene expression in cancer cells. Sphingomyelin synthase 1 gene (SGMS1) is one of the genes, the expression of which can be altered in cancer. SMS1 enzyme encoded by this gene catalyzes synthesis of sphingomyelin and diacylglycerol from phosphatidylcholine and ceramide. SMS1 may maintain the balance between cell death and survival by regulating the formation of the proaptotic mediator ceramide and anti-apoptotic mediator diacylglycerol. In addition, changes in the sphingomyelin level and sphingomyelin synthase activity have been observed in cancers of many tissues. However, the peculiarities of SGMS1 gene transcription have been insufficiently explored. In this work, the expression of transcripts of SGMS1 has been investigated by the method of real-time PCR in matched pairs of samples of human lung and esophagus cancer and adjacent tissues without pathology. A significant decrease in SMS1 transcript expression has been found in the samples of human lung cancer. At the same time, in the samples of human esophagus cancer and the adjacent tissues, the expression of SMS1 transcripts varies insignificantly, i.e., it is increased in seven and decreased in five of the fifteen samples. The obtained results indicate that SGMS1 gene is expressed differently in cancers of different genesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferlay J., Steliarova-Foucher E., Lortet-Tieulent J., Rosso S., Coebergh J.W., Comber H., Forman D., Bray F. 2013. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur. J. Cancer. 49, 1374–1403.

    Article  CAS  PubMed  Google Scholar 

  2. Demidyuk I.V., Shubin A.V., Gasanov E.V., Kurinov A.M., Demkin V.V., Vinogradova T.V., Zinovyeva M.V., Sass A.V., Zborovskaya I.B., Kostrov S.V. 2013. Alterations in gene expression of proprotein convertases in human lung cancer have a limited number of scenarios. PLoS ONE. 8, e55752.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Zinovyeva M.V., Monastyrskaya G.S., Kopantzev E.P., Vinogradova T.V., Kostina M.B., Sass A.V., Filyukova O.B., Uspenskaya N.Y., Sukhikh G.T., Sverdlov E.D. 2010. Identification of some human genes oppositely regulated during esophageal squamous cell carcinoma formation and human embryonic esophagus development. Dis. Esophagus. 23, 260–270.

    Article  CAS  PubMed  Google Scholar 

  4. Kopantzev E.P., Monastyrskaya G.S., Vinogradova T.V., Zinovyeva M.V., Kostina M.B., Filyukova O.B., Tonevitsky A.G., Sukhikh G.T., Sverdlov E.D. 2008. Differences in gene expression levels between early and later stages of human lung development are opposite to those between normal lung tissue and non-small lung cell carcinoma. Lung Cancer. 62, 23–34.

    Article  PubMed  Google Scholar 

  5. Korobko I.V., Zinov’eva M.V., Kopantsev E.P., Allakhverdiev A.K., Zborovskaya I.B., Sverdlov E.D. 2007. Expression of C-MET and HGF in non-small cell lung carcinomas. Mol. Genet. Microbiol. Virol. (Moscow). 22, 59–63.

    Article  Google Scholar 

  6. Dergunova L.V., Raevskaya N.M., Voloshenyuk E.L., Limborskaya S.A. 2007. Characteristics of expression of the genes of EGR1, neurotrophins, and their receptors in normal human lung tissues and lung cancers. Mol. Genet. Microbiol. Virol. (Moscow). 22, 68–74.

    Article  Google Scholar 

  7. Vladychenskaya I.P., Dergunova L.V., Limborska S.A. 2002. In vitro and in silico analysis of the predicted human MOB gene encoding a phylogenetically conserved transmembrane protein. Biomol. Eng. 18, 263–268.

    Article  CAS  PubMed  Google Scholar 

  8. Vladychenskaya I.P., Dergunova L.V., Dmitrieva V.G., Limborska S.A. 2004. Human gene MOB: Structure specification and aspects of transcriptional activity. Gene. 338, 257–265.

    Article  CAS  PubMed  Google Scholar 

  9. Rozhkova A.V., Dmitrieva V.G., Zhapparova O.N., Sudarkina O.Y., Nadezhdina E.S., Limborska S.A., Dergunova L.V. 2011. Human sphingomyelin synthase 1 gene (SMS1): Organization, multiple mRNA splice variants and expression in adult tissues. Gene. 481, 65–75.

    Article  CAS  PubMed  Google Scholar 

  10. Segui B., Andrieu-Abadie N., Jaffrezou J.P., Benoist H., Levade T. 2006. Sphingolipids as modulators of cancer cell death: Potential therapeutic targets. Biochim. Biophys. Acta. 1758, 2104–2120.

    Article  CAS  PubMed  Google Scholar 

  11. Claus R.A., Dorer M.J., Bunck A.C., Deigner H.P. 2009. Inhibition of sphingomyelin hydrolysis: Targeting the lipid mediator ceramide as a key regulator of cellular fate. Curr. Med. Chem. 16, 1978–2000.

    Article  CAS  PubMed  Google Scholar 

  12. Hannun Y.A. 1994. The sphingomyelin cycle and the second messenger function of ceramide. J. Biol. Chem. 269, 3125–3128.

    CAS  PubMed  Google Scholar 

  13. Kandyba A.G., Kobliakov V.A., Somova O.G., Dyatlovitskaya E.V. 2004. Change in contents of biologically active sphingolipids modulating cell growth and survival in hepatoma 27 compared to rat liver. Biochemistry (Moscow). 69, 497–500.

    Article  CAS  PubMed  Google Scholar 

  14. Narayan P., Dahiya R. 1991. Alterations in sphingomyelin and fatty acids in human benign prostatic hyperplasia and prostatic cancer. Biomed. Biochim. Acta. 50, 1099–1108.

    CAS  PubMed  Google Scholar 

  15. Albi E., La Porta C.A., Cataldi S., Magni M.V. 2005. Nuclear sphingomyelin-synthase and protein kinase C delta in melanoma cells. Arch. Biochem. Biophys. 438, 156–161.

    Article  CAS  PubMed  Google Scholar 

  16. Merchant T.E., Meneses P., Gierke L.W., Den Otter W., Glonek T. 1991. 31P magnetic resonance phospholipid profiles of neoplastic human breast tissues. Br. J. Cancer. 63, 693–698.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Merchant T.E., De Graaf P.W., Minsky B.D., Obertop H., Glonek T. 1993. Esophageal cancer phospholipid characterization by 31P NMR. NMR Biomed. 6, 187–193.

    Article  CAS  PubMed  Google Scholar 

  18. Chomczynski P., Mackey K. 1995. Short technical reports. Modification of the TRI reagent procedure for isolation of RNA from polysaccharide- and proteoglycan-rich sources. Biotechniques. 19, 942–945.

    CAS  PubMed  Google Scholar 

  19. Zhu Y.Y., Machleder E.M., Chenchik A., Li R., Siebert P.D. 2001. Reverse transcriptase template switching: A SMART approach for full-length cDNA library construction. Biotechniques. 30, 892–897.

    CAS  PubMed  Google Scholar 

  20. Rubie C., Kempf K., Hans J., Su T., Tilton B., Georg T., Brittner B., Ludwig B., Schilling M. 2005. Housekeeping gene variability in normal and cancerous colorectal, pancreatic, esophageal, gastric and hepatic tissues. Mol. Cell Probes. 19, 101–109.

    Article  CAS  PubMed  Google Scholar 

  21. Krasnov G.S., Oparina N.Yu., Dmitriev A.A., Kudryavtseva A.V., Anedchenko E.A., Kondrat’eva T.T., Zabarovsky E.R., Senchenko V.N. 2011. RPN1, a new reference gene for quantitative data normalization in lung and kidney cancer. Mol. Biol. (Moscow). 45, 211–220.

    Article  CAS  Google Scholar 

  22. Oparina N.Yu., Snezhkina A.V., Sadritdinova A.F., Veselovskii V.A., Dmitriev A.A., Senchenko V.N., Mel’nikova N.V., Speranskaya A.S., Darii M.V., Stepanov O.A., Barkhatov I.M., Kudryavtseva A.V. 2013. Differential expression of genes that encode glycolysis enzymes in kidney and lung cancer in humans. Russ. J. Genet. 49, 707–716.

    Article  CAS  Google Scholar 

  23. Pfaffl M.W., Horgan G.W., Dempfle L. 2002. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30, e36.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Morad S.A.F., Cabot M.C. 2013. Ceramide-orchestrated signalling in cancer cells. Nature Rev. Cancer. 13, 51–65.

    Article  CAS  Google Scholar 

  25. Barceló-Coblijn G., Martin M.L., De Almeida R.F.M., Noguera-Salvà M.A., Marcilla-Etxenike A., Guardiola-Serrano F., Lüth A., Kleuser B., Halver J.E., Escribá P.V. 2011. Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy. Proc. Natl. Acad. Sci. U. S. A. 108, 19569–19574.

    Article  PubMed Central  PubMed  Google Scholar 

  26. van Blitterswijk W.J., Klarenbeek J.B., van der Luit A.H., Alderliesten M.C., van Lummel M., Verheij M. 2010. Fas/CD95 down-regulation in lymphoma cells through acquired alkyllysophospholipid resistance: Partial role of associated sphingomyelin deficiency. Biochem. J. 425, 225–234.

    Article  Google Scholar 

  27. Meng A., Luberto C., Meier P., Bai A., Yang X., Hannun Y.A., Zhou D. 2004. Sphingomyelin synthase as a potential target for D609-induced apoptosis in U937 human monocytic leukemia cells. Exp. Cell Res. 292, 385–392.

    Article  CAS  PubMed  Google Scholar 

  28. Itoh M., Kitano T., Watanabe M., Kondo T., Yabu T., Taguchi Y., Iwai K., Tashima M., Uchiyama T., Okazaki T. 2003. Possible role of ceramide as an indicator of chemoresistance: Decrease of the ceramide content via activation of glucosylceramide synthase and sphingomyelin synthase in chemoresistant leukemia. Clin. Cancer Res. 9, 415–423.

    CAS  PubMed  Google Scholar 

  29. Abrams S.I. 2005. Positive and negative consequences of Fas/Fas ligand interactions in the antitumor response. Front. Biosci. 10, 809–821.

    Article  CAS  PubMed  Google Scholar 

  30. Listopad J.J., Kammertoens T., Anders K., Silkenstedt B., Willimsky G., Schmidt K., Kuehl A.A., Loddenkemper C., Blankenstein T. 2013. Fas expression by tumor stroma is required for cancer eradication. Proc. Natl. Acad. Sci. U. S. A. 110, 2276–2281.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hueber A.O., Bernard A.M., Herincs Z., Couzinet A., He H.T. 2002. An essential role for membrane rafts in the initiation of Fas/CD95-triggered cell death in mouse thymocytes. EMBO Rep. 3, 190–196.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Miyaji M., Jin Z.X., Yamaoka S., et al. Amakawa R., Fukuhara S., Sato S.B., Kobayashi T., Domae N., Mimori T., Bloom E.T., Okazaki T., Umehara H. 2005. Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis. J. Exp. Med. 202, 249–259.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Li Z., Hailemariam T.K., Zhou H., Li Y., Duckworth D.C., Peake D.A., Zhang Y., Kuo M.S., Cao G., Jiang X.C. 2007. Inhibition of sphingomyelin synthase (SMS) affects intracellular sphingomyelin accumulation and plasma membrane lipid organization. Biochim. Biophys. Acta. 1771, 1186–1194.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Roberts N.J., Zhou S., Diaz L.A., Jr., Holdhoff M. 2011. Systemic use of tumor necrosis factor alpha as an anticancer agent. Oncotarget. 2, 739–751.

    PubMed Central  PubMed  Google Scholar 

  35. Wang S., El-Deiry W.S. 2003. TRAIL and apoptosis induction by TNF-family death receptors. Oncogene. 22, 8628–8633.

    Article  CAS  PubMed  Google Scholar 

  36. Hoshi H., Sawada T., Uchida M., Iijima H., Kimura K., Hirakawa K., Wanibuchi H. 2013. MUC5AC protects pancreatic cancer cells from TRAIL-induced death pathways. Int. J. Oncol. 42, 887–893.

    CAS  PubMed  Google Scholar 

  37. Walczak H. 2013. Death receptor-ligand systems in cancer, cell death, and inflammation. Cold Spring Harbor Perspect. Biol. 5, a008698.

    Article  Google Scholar 

  38. Song J.H., Tse M.C., Bellail A., Phuphanich S., Khuri F., Kneteman N.M., Hao C. 2007. Lipid rafts and nonrafts mediate tumor necrosis factor related apoptosis-inducing ligand induced apoptotic and nonapoptotic signals in non small cell lung carcinoma cells. Cancer Res. 67, 6946–6955.

    Article  CAS  PubMed  Google Scholar 

  39. Ouyang W., Yang C., Zhang S., Liu Y., Yang B., Zhang J., Zhou F., Zhou Y., Xie C. 2013. Absence of death receptor translocation into lipid rafts in acquired TRAIL-resistant NSCLC cells. Int. J. Oncol. 42, 699–711.

    CAS  PubMed  Google Scholar 

  40. Ding T., Li Z., Hailemariam T., Mukherjee S., Maxfield F.R., Wu M.P., Jiang X.C. 2008. SMS overexpression and knockdown: Impact on cellular sphingomyelin and diacylglycerol metabolism, and cell apoptosis. J. Lipid Res. 49, 376–385.

    Article  CAS  PubMed  Google Scholar 

  41. Igney F.H., Krammer P.H. 2002. Immune escape of tumors: Apoptosis resistance and tumor counterattack. J. Leukoc. Biol. 71, 907–920.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Rozhkova.

Additional information

Original Russian Text © A.V. Rozhkova, M.V. Zinovyeva, A.V. Sass, I.B. Zborovskaya, S.A. Limborska, L.V. Dergunova, 2014, published in Molekulyarnaya Biologiya, 2014, Vol. 48, No. 3, pp. 395–402.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozhkova, A.V., Zinovyeva, M.V., Sass, A.V. et al. Expression of sphingomyelin synthase 1 (SGMS1) gene varies in human lung and esophagus cancer. Mol Biol 48, 340–346 (2014). https://doi.org/10.1134/S0026893314030170

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893314030170

Keywords

Navigation