Skip to main content
Log in

TALE nucleases as a new tool for genome editing

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Introducing targeted changes in the genome of living cells or whole organisms makes it possible to solve many problems of basic science, biotechnology, and medicine. Target gene knockout in zygotes helps to study the functions of the gene in the corresponding organisms, while replacement of single nucleotide in DNA provides an opportunity to correct gene mutations and to treat hereditary disorders. Adding a gene into a proper genome region can be used to construct producer cells or organisms with certain properties. Such genomic manipulations are possible due to the technology known as genome editing. In this technology, a break is introduced into a certain chromosomal DNA region with an endonuclease recognizing a unique sequence, and DNA integrity is then restored by cell repair systems. Custom-designed endonucleases able to cleave a selected target sequence are necessary tools for genome editing. Programmable endonucleases of a new type were constructed on the basis of bacterial transcription activator-like (TAL) effectors (TALEs), marking an important step in the development of genome editing and promoting its broad application. The review considers the history of discovering TALEs and creating TALE nucleases and describes their advantages over zinc finger endonucleases, which were constructed earlier. A section focuses on the genetic modifications that can be performed using various genome editing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TALE:

transcription activator-like effector

ZF nuclease:

zinc finger nuclease

References

  1. Hinnen A., Hicks J.B., Fink G.R. 1978. Transformation of yeast. Proc. Natl. Acad. Sci. U. S. A. 75, 1929–1933.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Thomas K.R., Folger K.R., Capecchi M.R. 1986. High frequency targeting of genes to specific sites in the mammalian genome. Cell. 44, 419–428.

    Article  CAS  PubMed  Google Scholar 

  3. Doetschman T., Gregg R.G., Maeda N., Hooper M.L., Melton D.W., Thompson S.S.O. 1987. Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature. 330, 576–578.

    Article  CAS  PubMed  Google Scholar 

  4. Capecchi M. 2001. Generating mice with targeted mutations. Nature Med. 7, 1086–1090.

    Article  CAS  PubMed  Google Scholar 

  5. Vasquez K.M., Marburger K., Intody Z., Wilson J.H. 2001. Manipulating the mammalian genome by homologous recombination. Proc. Natl. Acad. Sci. U. S. A. 98, 8403–8410.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Donoho G., Jasin M., Berg P. 1998. Analysis of gene targeting and intrachromosomal homologous recombination stimulated by genomic double-strand breaks in mouse embryonic stem cells. Mol. Cell Biol. 18, 4070–4078.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Choulika A., Perrin A., Dujon B., Nicolas J.-F. 1995. Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol. Cell Biol. 15, 1968–1973.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Arnould S., Chames P., Perez C., Lacroix E., Duclert A., Epinat J.-C., Stricher F., Petit A.-S., Patin A., Guillier S., Rolland S., Prieto J., Blanco F.J., Bravo J., Montoya G., Serrano L., Duchateau P., Paques F. 2006. Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets. J. Mol. Biol. 355, 443–458.

    Article  CAS  PubMed  Google Scholar 

  9. Durai S., Mani M., Kandavelou K., Wu J., Porteus M.H., Chandrasegaran S. 2005. Zinc finger nucleases: Custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res. 33, 5978–5990.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Dürrenberger F., Rochaix J.D. 1993. Characterization of the cleavage site and the recognition sequence of the I-CreI DNA endonuclease encoded by the chloroplast ribosomal intron of Chlamydomonas reinhardtii. Mol. Gen. Genet. 236, 409–414.

    Article  PubMed  Google Scholar 

  11. Smith J., Grizot S., Arnould S., Duclert A., Epinat J.-C., Chames P., Prieto J., Redondo P., Blanco F.J., Bravo J., Montoya G., Paques F., Duchateau P. 2006. A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res. 34, e149.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Arnould S., Perez C., Cabaniols J.-P., Smith J., Gouble A., Grizot S., Epinat J.-C., Duclert A., Duchateau P., Paques F. 2007. Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells. J. Mol. Biol. 371, 49–65.

    Article  CAS  PubMed  Google Scholar 

  13. Gao H., Smith J., Yang M., Jones S., Djukanovic V., Nicholson M.G., West A., Bidney D., Falco S.C., Jantz D., Lyznik L.A. 2010. Heritable targeted mutagenesis in maize using a designed endonuclease. Plant J. 61, 176–187.

    Article  CAS  PubMed  Google Scholar 

  14. Carroll D. 2008. Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Ther. 15, 1463–1468.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Molina R., Montoya G., Prieto J. 2011. In: Encyclopedia of Life Sciences. Chichester: Wiley, pp. 1–10.

    Google Scholar 

  16. Segal D.J., Meckler J.F. 2013. Genome engineering at the dawn of the golden age. Annu. Rev. Genomics Hum. Genet. 14, 135–158.

    Article  CAS  PubMed  Google Scholar 

  17. Maeder M.L., Thibodeau-Beganny S., Osiak A., Wright D.A., Anthony R.M., Eichtinger M., Jiang T., Foley J.E., Winfrey R.J., Townsend J.A., Unger-Wallace E., Sander J.D., Müller-Lerch F., Fu F., Pearlberg J., Göbel C., Dassie J.P., Pruett-Miller S.M., Porteus M.H., Sgroi D.C., Iafrate A.J., Dobbs D., McCray P.B., Cathomen T., Voytas D.F., Joung J.K. 2008. Rapid “opensource” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell. 31, 294–301.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Urnov F.D., Miller J.C., Lee Y.-L., Beausejour C.M., Rock J.M., Augustus S., Jamieson A.C., Porteus M.H., Gregory P.D., Holmes M.C. 2005. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. 435, 646–651.

    Article  CAS  PubMed  Google Scholar 

  19. Sebastiano V., Maeder M.L., Angstman J.F., Haddad B., Khayter C., Yeo D.T., Goodwin M.J., Hawkins J.S., Ramirez C.L., Batista L.F.Z., Artandi S.E., Wernig M., Joung J.K. 2011. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells. 29, 1717–1726.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Perez E.E., Wang J., Miller J.C., Jouvenot Y., Kim K.A, Liu O., Wang N., Lee G., Bartsevich V.V, Lee Y.-L., Guschin D.Y., Rupniewski I., Waite A.J., Carpenito C., Carroll R.G., Orange J.S., Urnov F.D., Rebar E.J., Ando D., Gregory P.D., Riley J.L., Holmes M.C., June C.H. 2008. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nature Biotechnol. 26, 808–816.

    Article  CAS  Google Scholar 

  21. Ramirez C.L., Foley J.E., Wright D.A., Müller-Lerch F., Rahman S.H., Cornu T.I., Winfrey R.J., Sander J.D., Fu F., Townsend J.A., Cathomen T., Voytas D.F., Joung J.K. 2008. Unexpected failure rates for modular assembly of engineered zinc fingers. Nature Methods. 5, 374–375.

    Article  CAS  PubMed  Google Scholar 

  22. Joung J.K., Sander J.D. 2013. TALENs: A widely applicable technology for targeted genome editing. Nature Rev. Mol. Cell. Biol. 14, 49–55.

    Article  CAS  Google Scholar 

  23. Bogdanove A.J., Schornack S., Lahaye T. 2010. TAL effectors: finding plant genes for disease and defense. Curr. Opin. Plant Biol. 13, 394–401.

    Article  CAS  PubMed  Google Scholar 

  24. Bonas U., Stall R.E., Staskawicz B. 1989. Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol. Gen. Genet. 218, 127–136.

    Article  CAS  PubMed  Google Scholar 

  25. Knoop V., Staskawicz B., Bonas U. 1991. Expression of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria is not under the control of hrp genes and is independent of plant factors. J. Bacteriol. 173, 7142–7150.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. De Feyter R., Yang Y., Gabriel D.W. 1993. Gene-forgenes interactions between cotton R genes and Xanthomonas campestris pv. malvacearum avr genes. Mol. Plant Microbe Interact. 6, 225–237.

    Article  PubMed  Google Scholar 

  27. Swarup S., De Feyter R., Brlansky R.H., Gabriel D.W. 1991. A pathogenicity locus from Xanthomonas citri enables strains from several pathovars of X. campestris to elicit cankerlike lesions on citrus. Phytopathology. 81, 802–809.

    Article  Google Scholar 

  28. Swarup S., Yang Y., Kingsley M.T., Gabriel D.W. 1992. An Xanthomonas citri pathogenicity gene, pthA, pleiotropically encodes gratuitous avirulence on nonhosts. Mol. Plant Microbe Interact. 5, 204–213.

    Article  CAS  PubMed  Google Scholar 

  29. Heuer H., Yin Y.-N., Xue Q.-Y., Smalla K., Guo J.-H. 2007. Repeat domain diversity of avrBs3-like genes in Ralstonia solanacearum strains and association with host preferences in the field. Appl. Environ. Microbiol. 73, 4379–4384.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Boch J., Bonas U. 2010. Xanthomonas AvrBs3 familytype III effectors: discovery and function. Annu. Rev. Phytopathol. 48, 419–436.

    Article  CAS  PubMed  Google Scholar 

  31. Yang Y., Gabriel D.W. 1995. Xanthomonas avirulence/pathogenicity gene family encodes functional plant nuclear targeting signals. Mol. Plant Microbe Interact. 8, 627–631.

    Article  CAS  PubMed  Google Scholar 

  32. Van den Ackerveken G., Marois E., Bonas U. 1996. Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell. 87, 1307–1316.

    Article  PubMed  Google Scholar 

  33. Zhu W., Yang B., Chittoor J.M., Johnson L.B., White F.F. 1998. AvrXa10 contains an acidic transcriptional activation domain in the functionally conserved C terminus. Mol. Plant Microbe Interact. 11, 824–832.

    Article  CAS  PubMed  Google Scholar 

  34. Yang B., Zhu W., Johnson L.B., White F.F. 2000. The virulence factor AvrXa7 of Xanthomonas oryzae pv. oryzae is a type III secretion pathway-dependent nuclear-localized double-stranded DNA-binding protein. Proc. Natl. Acad. Sci. U. S. A. 97, 9807–9812.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Sugio A., Yang B., Zhu T., White F.F. 2007. Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIAgamma1 and OsTFX1 during bacterial blight of rice. Proc. Natl. Acad. Sci. U. S. A. 104, 10720–10735.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Iyer A.S., McCouch S.R. 2004. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Mol. Plant Microbe Interact. 17, 1348–1354.

    Article  CAS  PubMed  Google Scholar 

  37. Herbers K., Conrads-Strauch J., Bonas U. 1992. Racespecificity of plant resistance to bacterial spot disease determined by repetitive motifs in a bacterial avirulence protein. Nature. 356, 172–174.

    Article  CAS  Google Scholar 

  38. Yang B., Zhu W., Johnson L.B., White F.F. 2000. The virulence factor AvrXa7 of Xanthomonas oryzae pv. oryzae is a type III secretion pathway-dependent nuclear-localized doublestranded DNA-binding protein. Proc. Natl. Acad. Sci. U. S. A. 97, 9807–9812.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kay S., Hahn S., Marois E., Hause G., Bonas U. 2007. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science. 318, 648–651.

    Article  CAS  PubMed  Google Scholar 

  40. Boch J., Scholze H., Schornack S., Landgraf A., Hahn S., Kay S., Lahaye T., Nickstadt A., Bonas U. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 326, 1509–1512.

    Article  CAS  PubMed  Google Scholar 

  41. Moscou M.J., Bogdanove A.J. 2009. A simple cipher governs DNA recognition by TAL effectors. Science. 326, 1501.

    Article  CAS  PubMed  Google Scholar 

  42. Bogdanove A.J., Voytas D.F. 2011. TAL effectors: customizable proteins for DNA targeting. Science. 333, 1843–1846.

    Article  CAS  PubMed  Google Scholar 

  43. Deng D., Yin P., Yan C., Pan X., Gong X., Qi S., Xie T., Mahfouz M., Zhu J.-K., Yan N., Shi Y. 2012. Recognition of methylated DNA by TAL effectors. Cell Res. 22, 1502–1504.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Mak A.N., Bradley P., Cernadas R.A., Bogdanove A.J., Stoddard B.L. 2012. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science. 335, 716–719.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Christian M., Cermak T., Doyle E.L., Schmidt C., Zhang F., Hummel A., Bogdanove A.J., Voytas D.F. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 186, 757–761.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Sun N., Zhao H. 2013. Transcription activator-like effector nucleases (TALENs): A highly efficient and versatile tool for genome editing. Biotechnol. Bioeng. 110, 1811–1821.

    Article  CAS  PubMed  Google Scholar 

  47. Miller J.C., Tan S., Qiao G., Barlow K.A., Wang J., Xia D.F., Meng X., Paschon D.E., Leung E., Hinkley S.J., Dulay G.P., Hua K.L., Ankoudinova I., Cost G.J., Urnov F.D., Zhang H.S., Holmes M.C., Zhang L., Gregory P.D., Rebar E.J. 2011. A TALE nuclease architecture for efficient genome editing. Nature Biotechnol. 29, 143–150.

    Article  CAS  Google Scholar 

  48. Bedell V.M., Wang Y., Campbell J.M., Poshusta T.L., Starker C.G., Krug R.G., Tan W., Penheiter S.G., Ma A.C., Leung A.Y.H., Fahrenkrug S.C., Carlson D.F., Voytas D.F., Clark K.J., Essner J.J., Ekker S.C. 2012. In vivo genome editing using a high-efficiency TALEN system. Nature. 491, 114–118.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Cong L., Zhou R., Kuo Y.-C., Cunniff M., Zhang F. 2012. Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nature Commun. 3, 968.

    Article  Google Scholar 

  50. Streubel J., Blücher C., Landgraf A., Boch J. 2012. TAL effector RVD specificities and efficiencies. Nature Biotechnol. 30, 593–595.

    Article  CAS  Google Scholar 

  51. Schmid-Burgk J.L., Schmidt T., Kaiser V., Höning K., Hornung V. 2013. A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes. Nature Biotechnol. 31, 76–81.

    Article  CAS  Google Scholar 

  52. Ding Q., Lee Y.-K., Schaefer E.A.K., Peters D.T., Veres A., Kim K., Kuperwasser N., Motola D.L., Meissner T.B., Hendriks W.T., Trevisan M., Gupta R.M., Moisan A., Banks E., Friesen M., Schinzel R.T., Xia F., Tang A., Xia Y., Figueroa E., Wann A., Ahfeldt T., Daheron L., Zhang F., Rubin L.L., Peng L.F., Chung R.T., Musunuru K., Cowan C.A. 2013. A TALEN genomeediting system for generating human stem cell-based disease models. Cell Stem Cell. 12, 238–251.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Sander J.D., Cade L., Khayter C., Reyon D., Peterson R.T., Joung J.K., Yeh J.-R.J. 2011. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nature Biotechnol. 29, 697–698.

    Article  CAS  Google Scholar 

  54. Reyon D., Tsai S.Q., Khayter C., Foden J.A., Sander J.D., Joung J.K. 2012. FLASH assembly of TALENs for high-throughput genome editing. Nature Biotechnol. 30, 460–465.

    Article  CAS  Google Scholar 

  55. Brugmans L., Kanaar R., Essers J. 2007. Analysis of DNA double-strand break repair pathways in mice. Mutat. Res. 614, 95–108.

    Article  CAS  PubMed  Google Scholar 

  56. Orlando S.J., Santiago Y., DeKelver R.C., Freyvert Y., Boydston E.A., Moehle E.A., Choi V.M., Gopalan S.M., Lou J.F., Li J., Miller J.C., Holmes M.C., Gregory P.D., Urnov F.D., Cost G.J. 2010. Zinc-finger nucleasedriven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res. 38, e152.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Hockemeyer D., Soldner F., Beard C., Gao Q., Mitalipova M., DeKelver R.C., Katibah G.E., Amora R., Boydston E.A., Zeitler B., Meng X., Miller J.C., Zhang L., Rebar E.J., Gregory P.D., Urnov F.D., Jaenisch R. 2009. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nature Biotechnol. 27, 851–857.

    Article  CAS  Google Scholar 

  58. Hockemeyer D., Wang H., Kiani S., Lai C.S., Gao Q., Cassady J.P., Cost G.J., Zhang L., Santiago Y., Miller J.C., Zeitler B., Cherone J.M., Meng X., Hinkley S.J., Rebar E.J., Gregory P.D., Urnov F.D., Jaenisch R. 2011. Genetic engineering of human pluripotent cells using TALE nucleases. Nature Biotechnol. 29, 731–734.

    Article  CAS  Google Scholar 

  59. Torikai H., Reik A., Liu P.-Q., Zhou Y., Zhang L., Maiti S., Huls H., Miller J.C., Kebriaei P., Rabinovitch B., Lee D.A., Champlin R.E., Bonini C., Naldini L., Rebar E.J., Gregory P.D., Holmes M.C., Cooper L.J.N. 2012. A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood. 119, 5697–5705.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Provasi E., Genovese P., Lombardo A., Magnani Z., Liu P.-Q., Reik A., Chu V., Paschon D.E., Zhang L., Kuball J., Camisa B., Bondanza A., Casorati G., Ponzoni M., Ciceri F., Bordignon C., Greenberg P.D., Holmes M.C., Gregory P.D., Naldini L., Bonini C. 2012. Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nature Med. 18, 807–815.

    Article  CAS  PubMed  Google Scholar 

  61. Lee H.J., Kim E., Kim J.-S. 2010. Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res. 20, 81–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Carlson D.F., Tan W., Lillico S.G., Stverakova D., Proudfoot C., Christian M. 2012. Efficient TALEN-mediated gene knockout in livestock. Proc. Natl. Acad. Sci. U. S. A. 43, 17382–17387.

    Article  Google Scholar 

  63. Ma S., Zhang S., Wang F., Liu Y., Liu Y., Xu H., Liu C., Lin Y., Zhao P., Xia Q. 2012. Highly efficient and specific genome editing in silkworm using custom TAL-ENs. PLoS One. 7, e45035.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Maresca M., Lin V.G., Guo N., Yang Y. 2013. Obligate ligation-gated recombination (ObLiGaRe): Customdesigned nuclease-mediated targeted integration through nonhomologous end joining. Genome Res. 23, 539–546.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Rémy S., Tesson L., Ménoret S., Usal C., Scharenberg A.M., Anegon I. 2010. Zinc-finger nucleases: A powerful tool for genetic engineering of animals. Transgenic Res. 19, 363–371.

    Article  PubMed  Google Scholar 

  66. Biasco L., Baricordi C., Aiuti A. 2012. Retroviral integrations in gene therapy trials. Mol. Ther. 20, 709–716.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Zou J., Sweeney C.L., Chou B., Choi U., Pan J., Wang H., Sarah N., Cheng L., Malech H.L., Dowey S.N. 2011. Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells: Functional correction by zinc finger nuclease-mediated safe harbor targeting. Blood. 117, 5561–5572.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Wang H., Hu Y.-C., Markoulaki S., Welstead G.G., Cheng A.W., Shivalila C.S., Pyntikova T., Dadon D.B., Voytas D.F., Bogdanove A.J., Page D.C., Jaenisch R. 2013. TALEN-mediated editing of the mouse Y chromosome. Nature Biotechnol. 31, 530–532.

    Article  CAS  Google Scholar 

  69. Zu Y., Tong X., Wang Z., Liu D., Pan R., Li Z., Hu Y., Luo Z., Huang P., Wu Q., Zhu Z., Zhang B., Lin S. 2013. TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nature Methods. 10, 329–331.

    Article  CAS  PubMed  Google Scholar 

  70. Li H., Haurigot V., Doyon Y., Li T., Wong S.Y., Bhagwat A.S., Malani N., Anguela X.M., Sharma R., Ivanciu L., Murphy S.L., Finn J.D., Khazi F.R., Zhou S., Paschon D.E., Rebar E.J., Bushman F.D., Gregory P.D., Holmes M.C., High K.A. 2011. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature. 475, 217–221.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Chen F., Pruett-Miller S.M., Huang Y., Gjoka M., Duda K., Taunton J., Collingwood T.N., Frodin M., Davis G.D. 2011. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nature Methods. 8, 753–755.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Perez-Pinera P., Ousterout D.G., Gersbach C.A. 2012. Advances in targeted genome editing. Curr. Opin. Chem. Biol. 16, 268–277.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Soldner F., Laganière J., Cheng A.W., Hockemeyer D., Gao Q., Alagappan R., Khurana V., Golbe L.I., Myers R.H., Lindquist S., Zhang L., Guschin D., Fong L.K., Vu B.J., Meng X., Urnov F.D., Rebar E.J., Gregory P.D., Zhang H.S., Jaenisch R. 2011. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell. 146, 318–331.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Yusa K., Rashid S.T., Strick-Marchand H., Varela I., Liu P.-Q., Paschon D.E., Miranda E., Ordóñez A., Hannan N.R.F., Rouhani F.J., Darche S., Alexander G., Marciniak S.J., Fusaki N., Hasegawa M., Holmes M.C., Di Santo J.P., Lomas D.A., Bradley A., Vallier L. 2011. TTargeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature. 478, 391–394.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Zou J., Maeder M.L., Mali P., Pruett-Miller S.M., Thibodeau-Beganny S., Chou B.-K., Chen G., Ye Z., Park I.-H., Daley G.Q., Porteus M.H., Joung J.K., Cheng L. 2009. Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell. 5, 97–110.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Moore F.E., Reyon D., Sander J.D., Martinez S.A., Blackburn J.S., Khayter C., Ramirez C.L., Joung J.K., Langenau D.M. 2012. Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs). PLoS ONE. 7, e37877.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Lamb B.M., Mercer A.C., Barbas C.F. 2013. Directed evolution of the TALE N-terminal domain for recognition of all 5’ bases. Nucleic Acids Res. 41, 9779–9785.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Kim Y., Kweon J., Kim A., Chon J.K., Yoo J.Y., Kim H.J., Kim S., Lee C., Jeong E., Chung E., Kim D., Lee M.S., Go E.M., Song H.J., Kim H., Cho N., Bang D., Kim S., Kim J.-S. 2013. A library of TAL effector nucleases spanning the human genome. Nature Biotechnol. 31, 251–258.

    Article  CAS  Google Scholar 

  79. Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337, 816–821.

    Article  CAS  PubMed  Google Scholar 

  80. Fu Y., Foden J.A., Khayter C., Maeder M.L., Reyon D., Joung J.K., Sander J.D. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnol. 31, 822–826.

    Article  CAS  Google Scholar 

  81. Owens J.B., Mauro D., Stoytchev I., Bhakta M.S., Kim M.-S., Segal D.J., Moisyadi S. 2013. Transcription activator like effector (TALE)-directed piggyBac transposition in human cells. Nucleic Acids Res. 41, 9197–9207.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Mercer A.C., Gaj T., Fuller R.P., Barbas C.F. 2012. Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Res. 40, 11163–11172.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Zhang F., Cong L., Lodato S., Kosuri S., Church G.M., Arlotta P. 2011. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nature Biotechnol. 29, 149–154.

    Article  Google Scholar 

  84. Bultmann S., Morbitzer R., Schmidt C.S., Thanisch K., Spada F., Elsaesser J., Lahaye T., Leonhardt H. 2012. Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers. Nucleic Acids Res. 40, 5368–5377.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Geissler R., Scholze H., Hahn S., Streubel J., Bonas U., Behrens S.-E., Boch J. 2011. Transcriptional activators of human genes with programmable DNA-specificity. PLoS ONE. 6, e19509.

    Article  CAS  PubMed  Google Scholar 

  86. Minczuk M., Papworth M.A, Kolasinska P., Murphy M.P., Klug A. 2006. Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase. Proc. Natl. Acad. Sci. U. S. A. 103, 19689–19694.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Li F., Papworth M., Minczuk M., Rohde C., Zhang Y., Ragozin S., Jeltsch A. 2007. Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes. Nucleic Acids Res. 35, 100–112.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Glazkova.

Additional information

Original Russian Text © D.V. Glazkova, G.A. Shipulin, 2014, published in Molekulyarnaya Biologiya, 2014, Vol. 48, No. 3, pp. 355–370.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glazkova, D.V., Shipulin, G.A. TALE nucleases as a new tool for genome editing. Mol Biol 48, 305–318 (2014). https://doi.org/10.1134/S0026893314030054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893314030054

Keywords

Navigation