Skip to main content
Log in

DEAD-Box RNA helicases in animal gametogenesis

Molecular Biology Aims and scope Submit manuscript

Abstract

The review summarizes a current knowledge about a role of RNA helicases in the development and maintenance of gamenogenesis in eukaryotes. We focused on three RNA helicase family members—Vasa/DDX4, Belle/DDX3, and Spindle-E/TDRD9—that contain characteristic amino acid sequence motifs (DEAD box) and perform substantial conserved functions in the germinal tissues of various species from Drosophila to human. These enzymes are involved in a broad range of activities associated with the regulation of transcription, splicing, nuclear export and, especially, with translation initiation. Expression of genes required for gametogenesis is regulated mainly at the transcriptional level. RNA helicases are involved in the formation of cytoplasmic ribonucleoprotein (RNP) granules and RNA silencing. A highly conserved central domain is characteristic of DEAD-box RNA helicases and determines their basic biological activity in ATP-dependent unwinding of short RNA duplexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Gorbalenya A.E., Koonin E.V. 1993. Helicases: Amino acid comparisons and structure-function relationships. Curr. Opin. Struct. Biol. 3, 419–429.

    CAS  Google Scholar 

  2. Linder P., Lasko P.F., Ashburner M., Leroy P., Nielsen P.J., Nishi K., Schnier J., Slonimski P.P. 1989. Birth of the D-E-A-D box. Nature. 337, 121–122.

    CAS  PubMed  Google Scholar 

  3. Linder P., Jankowsky E. 2011. From unwinding to clamping: The DEAD box RNA helicase family. Nature Rev. Mol. Cell Biol. 12, 505–516.

    CAS  Google Scholar 

  4. Schupbach T., Wieschaus E. 1986. Germline autonomy of maternal-effect mutations altering the embryonic body pattern of Drosophila. Dev. Biol. 113, 443–448.

    CAS  PubMed  Google Scholar 

  5. Hay B., Jan L.Y., Jan Y.N. 1988. A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell. 55, 577–587.

    CAS  PubMed  Google Scholar 

  6. Lasko P.F., Ashburner M. 1990. Posterior localization of vasa protein correlates with, but is not sufficient for, pole cell development. Genes Dev. 4, 905–921.

    CAS  PubMed  Google Scholar 

  7. Lahn B.T., Page D.C. 1997. Functional coherence of the human Y chromosome. Science. 278, 675–680.

    CAS  PubMed  Google Scholar 

  8. Chuang R.Y., Weaver P. L., Liu Z., Chang T.H. 1997. Requirement of the DEAD-box protein Ded1p for messenger RNA translation. Science. 275, 1468–1471.

    CAS  PubMed  Google Scholar 

  9. De la Cruz J., Iost I., Kressler D., Linder P. 1997. The p20 and Ded1 proteins have antagonistic roles in eIF4E-dependent translation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 94, 5201–5206.

    PubMed Central  PubMed  Google Scholar 

  10. Johnstone O., Deuring R., Bock R., Linder P., Fuller M.T., Lasko P. 2005. Belle is a Drosophila DEAD-box protein required for viability and in the germ line. Dev. Biol. 277, 92–101.

    CAS  PubMed  Google Scholar 

  11. Gillespie D.E., Berg C.A. 1995. Homeless is required for RNA localization in Drosophila oogenesis and encodes a new member of the DE-H family of RNA-dependent ATPases. Genes Dev. 9, 2495–2508.

    CAS  PubMed  Google Scholar 

  12. González-Reyes A., Elliott H., St. Johnston D. 1997. Oocyte determination and the origin of polarity in Drosophila: The role of the spindle genes. Development. 124, 4927–4937.

    PubMed  Google Scholar 

  13. Sengoku T., Nureki O., Nakamura A., Kobayashi S., Yokoyama S. 2006. Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell. 125, 287–300.

    CAS  PubMed  Google Scholar 

  14. Linder P., Fuller-Pace F.V. 2013. Looking back on the birth of DEAD-box RNA helicases. Biochim. Biophys. Acta. 1829, 750–755.

    CAS  PubMed  Google Scholar 

  15. Jankowsky E. 2011. RNA helicases at work: Binding and rearranging. Trends Biochem. Sci. 36, 19–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Jarmoskaite I., Russell R. 2011. DEAD-box proteins as RNA helicases and chaperones. Wiley Interdiscip. Rev. RNA. 2, 135–152.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Pyle A.M. 2008. Translocation and unwinding mechanisms of RNA and DNA helicases. Ann. Rev. Biophys. 37, 317–336.

    CAS  Google Scholar 

  18. Yang Q., Jankowsky, E. 2006. The DEAD-box protein Ded1 unwinds RNA duplexes by a mode distinct from translocating helicases. Nature Struct. Mol. Biol. 13, 981–986.

    CAS  Google Scholar 

  19. Yang Q., Del Campo M., Lambowitz A.M., Jankowsky E. 2007. DEAD-box proteins unwind duplexes by local strand separation. Mol. Cell. 28, 253–263.

    CAS  PubMed  Google Scholar 

  20. Chen Y., Potratz J.P., Tijerina P., Del Campo M., Lambowitz A.M., Russell R. 2008. DEAD-box proteins can completely separate an RNA duplex using a single ATP. Proc. Natl. Acad. Sci. U. S. A. 105, 20203–20208.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Henn A., Cao W., Licciardello N., Heitkamp S.E., Hackney D.D., De La Cruz E.M. 2010. Pathway of ATP utilization and duplex rRNA unwinding by the DEAD-box helicase, DbpA. Proc. Natl. Acad. Sci. U. S. A. 107, 4046–4050.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Grifo J.A., Abramson R.D., Satler C.A., Merrick W.C. 1984. RNA-stimulated ATPase activity of eukaryotic initiation factors. J. Biol. Chem. 259, 8648–8654.

    CAS  PubMed  Google Scholar 

  23. Liu F., Putnam A., Jankowsky E. 2008. ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding. Proc. Natl. Acad. Sci. U. S. A. 105, 20209–20214.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Fairman M.E., Maroney P.A., Wang W., Bowers H.A., Gollnick P., Nilsen T.W., Jankowsky E. 2004. Protein displacement by DExH/D “RNA helicases” without duplex unwinding. Science. 304, 730–734.

    CAS  PubMed  Google Scholar 

  25. Lund M.K., Guthrie C. 2005. The DEAD-box protein Dbp5p is required to dissociate Mex67p from exported mRNPs at the nuclear rim. Mol. Cell. 20, 645–651.

    CAS  PubMed  Google Scholar 

  26. Tran E.J., Zhou Y., Corbett A.H., Wente S.R. 2007. The DEAD-box protein Dbp5 controls mRNA export by triggering specific RNA: protein remodeling events. Mol. Cell. 28, 850–859.

    CAS  PubMed  Google Scholar 

  27. Rossler O.G., Straka A., Stahl H. 2001. Rearrangement of structured RNA via branch migration structures catalysed by the highly related DEAD-box proteins p68 and p72. Nucleic Acids Res. 29, 2088–2096.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Chamot D., Colvin K.R., Kujat-Choy S.L., Owttrim G.W. 2005. RNA structural rearrangement via unwinding and annealing by the cyanobacterial RNA helicase, CrhR. J. Biol. Chem. 280, 2036–2044.

    CAS  PubMed  Google Scholar 

  29. Yang Q., Jankowsky E. 2005. ATP- and ADP-dependent modulation of RNA unwinding and strand annealing activities by the DEAD-box protein DED1. Biochemistry. 44, 13591–13601.

    CAS  PubMed  Google Scholar 

  30. Uhlmann-Schiffler H., Jalal C., Stahl H. 2006. Ddx42p, a human DEAD box protein with RNA chaperone activities. Nucleic Acids Res. 34, 10–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Bono F., Ebert J., Lorentzen E., Conti E. 2006. The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA. Cell. 126, 713–725.

    CAS  PubMed  Google Scholar 

  32. Andersen C.B., Ballut L., Johansen J.S., Chamieh H., Nielsen K.H., Oliveira C.L., Pedersen J.S., Seraphin B., Le Hir H., Andersen G.R. 2006. Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA. Science. 313, 1968–1972.

    CAS  PubMed  Google Scholar 

  33. Sonenberg N., Hinnebusch A.G. 2009. Regulation of translation initiation in eukaryotes: Mechanisms and biological targets. Cell. 136, 731–745.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Parsyan A., Svitkin Y., Shahbazian D., Gkogkas C., Lasko P., Merrick W.C., Sonenberg N. 2011. mRNA helicases: The tacticians of translational control. Nature Rev. Mol. Cell Biol. 12, 235–245.

    CAS  Google Scholar 

  35. Jackson R.J., Hellen C.U., Pestova T.V. 2010. The mechanism of eukaryotic translation initiation and principles of its regulation. Nature Rev. Mol. Cell Biol. 11, 113–127.

    CAS  Google Scholar 

  36. Rozovsky N., Butterworth A.C., Moore M.J. 2008. Interactions between eIF4AI and its accessory factors eIF4B and eIF4H. RNA. 14, 2136–2148.

    CAS  PubMed  Google Scholar 

  37. Rogers G.W.Jr., Richter N.J., Lima W.F., Merrick W.C. 2001. Modulation of the helicase activity of eIF4A by eIF4B, eIF4H, and eIF4F. J. Biol. Chem. 276, 30914–30922.

    CAS  PubMed  Google Scholar 

  38. Rosner A., Rinkevich B. 2007. The DDX3 subfamily of the DEAD box helicases: Divergent roles as unveiled by studying different organisms and in vitro assays. Curr. Med. Chem. 14, 2517–2525.

    CAS  PubMed  Google Scholar 

  39. Ditton H.J., Zimmer J., Kamp C., Rajpert-De Meyts E., Vogt P.H. 2004. The AZFa gene DBY (DDX3Y) is widely transcribed but the protein is limited to the male germ cells by translation control. Hum. Mol. Genet. 13, 2333–2341.

    CAS  PubMed  Google Scholar 

  40. Tiepolo L., Zuffardi O. 1976. Localization of factors controlling spermatogenesis in the nonfluorescent portion of the human Y chromosome long arm. Hum. Genet. 34, 119–124.

    CAS  PubMed  Google Scholar 

  41. Foresta C., Ferlin A., Moro E. 2000. Deletion and expression analysis of AZFa genes on the human Y chromosome revealed a major role for DBY in male infertility. Hum. Mol. Genet. 9, 1161–1169.

    CAS  PubMed  Google Scholar 

  42. Foresta C., Moro E., Ferlin A. 2001. Y chromosome microdeletions and alterations of spermatogenesis. Endocr. Rev. 22, 226–239.

    CAS  PubMed  Google Scholar 

  43. Lardone M.C., Parodi D.A., Valdevenito R., Ebensperger M., Piottante A., Madariaga M., Smith R., Pommer R., Zambrano N., Castro A. 2007. Quantification of DDX3Y, RBMY1, DAZ, and TSPY mRNAs in testes of patients with severe impairment of spermatogenesis. Mol. Hum. Reprod. 13, 705–712.

    CAS  PubMed  Google Scholar 

  44. Navarro-Costa P., Plancha C.E., Gonçalves J. 2010. Genetic dissection of the AZF regions of the human Ychromosome: Thriller or filler for male (in)fertility? J. Biomed. Biotechnol. 2010, 936569.

    PubMed Central  PubMed  Google Scholar 

  45. Kamp C., Huellen K., Fernandes S., Sousa M., et al. 2001. High deletion frequency of the complete AZFa sequence in men with Sertoli-cell-only syndrome. Mol. Hum. Reprod. 7, 987–994.

    CAS  PubMed  Google Scholar 

  46. Findley S.D., Tamanaha M., Clegg N.J., RuoholaBaker H. 2003. Maelstrom, a Drosophila spindle-class gene, encodes a protein that colocalizes with Vasa and RDE1/AGO1 homolog, Aubergine, in nuage. Development. 130, 859–871.

    CAS  PubMed  Google Scholar 

  47. Snee M.J., Macdonald P.M. 2004. Live imaging of nuage and polar granules: Evidence against a precursor-product relationship and a novel role for Oskar in stabilization of polar granule components. J. Cell. Sci. 117, 2109–2120.

    CAS  PubMed  Google Scholar 

  48. Lim A.K., Kai T. 2007. A unique germline organelle, Nuage, functions to repress selfish genetic elements in Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 104, 6714–6719.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Kibanov M.V., Egorova K.S., Ryazansky S.S., Sokolova O.A., Kotov A.A., Olenkina O.M., Stolyarenko A.D., Gvozdev V.A., Olenina L.V. 2011. A novel organelle, the piNG-body, in the nuage of Drosophila male germ cells is associated with piRNA-mediated gene silencing. Mol. Biol. Cell. 22, 3410–3419.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Poulton J.S., Huang Y.C., Smith L., Sun J., Leake N., Schleede J., Stevens L.M., Deng W.M. 2011. The microRNA pathway regulates the temporal pattern of Notch signaling in Drosophila follicle cells. Development. 138, 1737–1745.

    CAS  PubMed  Google Scholar 

  51. Schröder M. 2010. Human DEAD-box protein 3 has multiple functions in gene regulation and cell cycle control and is a prime target for viral manipulation. Biochem. Pharmacol. 79, 297–306.

    PubMed  Google Scholar 

  52. Lee C.S., Dias A.P., Jedrychowski M., Patel A.H., Hsu J.L., Reed R. 2008. Human DDX3 functions in translation and interacts with the translation initiation factor eIF3. Nucleic Acids Res. 36, 4708–4718.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Chao C.H., Chen C.M., Cheng P.L., Shih J.W., Tsou A.P., Lee Y.H. 2006. DDX3, a DEAD box RNA helicase with tumor growth-suppressive property and transcriptional regulation activity of the p21waf1/cip1 promoter, is a candidate tumor suppressor. Cancer Res. 66, 6579–6588.

    CAS  PubMed  Google Scholar 

  54. Lai M.C., Lee Y.H., Tarn W.Y. 2008. The DEAD-box RNA helicase DDX3 associates with export messenger ribonucleoproteins as well as tip-associated protein and participates in translational control. Mol. Biol. Cell. 19, 3847–3858.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Lai M.C., Chang W.C., Shieh S.Y., Tarn W.Y. 2010. DDX3 regulates cell growth through translational control of cyclin E1. Mol. Cell. Biol. 30, 5444–5453.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Yedavalli V.S., Neuveut C., Chi Y.H., Kleiman L., Jeang K.T. 2004. Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell. 119, 381–392.

    CAS  PubMed  Google Scholar 

  57. Sekiguchi T., Iida H., Fukumura J., Nishimoto T. 2004. Human DDX3Y, the Y-encoded isoform of RNA helicase DDX3, rescues a hamster temperature-sensitive ET24 mutant cell line with a DDX3X mutation. Exp. Cell Res. 300, 213–222.

    CAS  PubMed  Google Scholar 

  58. Schröder M., Baran M., Bowie A.G. 2008. Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKepsilon-mediated IRF activation. EMBO J. 27, 2147–2157.

    PubMed  Google Scholar 

  59. Zhou Z., Licklider L.J., Gygi S.P., Reed R. 2002. Comprehensive proteomic analysis of the human spliceosome. Nature. 419, 182–185.

    CAS  PubMed  Google Scholar 

  60. Merz C., Urlaub H., Will C.L., Luhrmann R. 2007. Protein composition of human mRNPs spliced in vitro and differential requirements for mRNP protein recruitment. RNA. 13, 116–128.

    CAS  PubMed  Google Scholar 

  61. Soulat D., Bürckstümmer T., Westermayer S., Goncalves A., Bauch A., Stefanovic A., Hantschel O., Bennett K.L., Decker T., Superti-Furga G. 2008. The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. EMBO J. 27, 2135–2146.

    CAS  PubMed  Google Scholar 

  62. Botlagunta M., Vesuna F., Mironchik Y., et al., 2008. Oncogenic role of DDX3 in breast cancer biogenesis. Oncogene. 27, 3912–3922.

    CAS  PubMed  Google Scholar 

  63. Wu D.W., Liu W.S., Wang J., Chen C.Y., Cheng Y.W., Lee H. 2011. Reduced p21 (WAF1/CIP1) via alteration of p53-DDX3 pathway is associated with poor relapse-free survival in early-stage human papillomavirus-associated lung cancer. Clin. Cancer Res. 17, 1895–1905.

    CAS  PubMed  Google Scholar 

  64. Ambrus A.M., Frolov M.V. 2010. Mutation of the DEAD-box helicase belle downregulates the cyclindependent kinase inhibitor Dacapo. Cell Cycle. 9, 1016–1020.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Soto-Rifo R., Rubilar P.S., Limousin T., de Breyne S., Décimo D., Ohlmann T. 2012. DEAD-box protein DDX3 associates with eIF4F to promote translation of selected mRNAs. EMBO J. 31, 3745–3756.

    CAS  PubMed  Google Scholar 

  66. Shih J.W., Tsai T.Y., Chao C.H., Wu Lee Y.H. 2008. Candidate tumor suppressor DDX3 RNA helicase specifically represses cap-dependent translation by acting as an eIF4E inhibitory protein. Oncogene. 27, 700–714.

    CAS  PubMed  Google Scholar 

  67. Yarunin A., Harris R.E., Ashe M.P., Ashe H.L. 2011. Patterning of the Drosophila oocyte by a sequential translation repression program involving the d4EHP and Belle translational repressors. RNA Biol. 8, 904–912.

    CAS  PubMed  Google Scholar 

  68. Daga R.R., Jimenez J. 1999. Translational control of the cdc25 cell cycle phosphatase: A molecular mechanism coupling mitosis to cell growth. J. Cell Sci. 112, 3137–3146.

    CAS  PubMed  Google Scholar 

  69. Grallert B., Kearsey S.E., Lenhard M., Carlson C.R., Nurse P., Boye E., Labib K. 2000. A fission yeast general translation factor reveals links between protein synthesis and cell cycle controls. J. Cell Sci. 113, 1447–1458.

    CAS  PubMed  Google Scholar 

  70. Fukumura J., Noguchi E., Sekiguchi T., Nishimoto T. 2003. A temperature-sensitive mutant of the mammalian RNA helicase, DEAD-BOX X isoform, DBX, defective in the transition from G1 to S phase. J. Biochem. 134, 71–82.

    CAS  PubMed  Google Scholar 

  71. Goulet I., Boisvenue S., Mokas S., Mazroui R., Côté J. 2008. TDRD3, a novel Tudor domain-containing protein, localizes to cytoplasmic stress granules. Hum. Mol. Genet. 117, 3055–3074.

    CAS  PubMed  Google Scholar 

  72. Shih J.W., Wang W.T., Tsai T.Y., Kuo C.Y., Li H.K., Wu Lee Y.H. 2012. Critical roles of RNA helicase DDX3 and its interactions with eIF4E/PABP1 in stress granule assembly and stress response. Biochem. J. 441, 119–129.

    CAS  PubMed  Google Scholar 

  73. Soto-Rifo R., Rubilar P.S., Ohlmann T. 2013. The DEAD-box helicase DDX3 substitutes for the capbinding protein eIF4E to promote compartmentalized translation initiation of the HIV-1 genomic RNA. Nucleic Acids Res. 41, 6286–6299.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Ulvila J., Parikka M., Kleino A., Sormunen R., Ezekowitz R.A., Kocks C., Rämet M. 2006. Doublestranded RNA is internalized by scavenger receptormediated endocytosis in Drosophila S2 cells. J. Biol. Chem. 281, 14370–14375.

    CAS  PubMed  Google Scholar 

  75. Zhou R., Hotta I., Denli A.M., Hong P., Perrimon N., Hannon G.J. 2008. Comparative analysis of argonaute-dependent small RNA pathways in Drosophila. Mol. Cell. 32, 592–599.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Kasim V., Wu S., Taira K., Miyagishi M. 2013. Determination of the role of DDX3 a factor involved in mammalian RNAi pathway using an shRNA-expression library. PLoS ONE. 8, e59445.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Siomi M.C., Mannen T., Siomi H. 2010. How does the royal family of Tudor rule the PIWI-interacting RNA pathway? Genes Dev. 24, 636–646.

    CAS  PubMed  Google Scholar 

  78. González-Reyes A., St. Johnston D. 1994. Role of oocyte position in establishment of anterior-posterior polarity in Drosophila. Science. 266, 639–642.

    PubMed  Google Scholar 

  79. Stapleton W., Das S., McKee B.D. 2001. A role of the Drosophila homeless gene in repression of Stellate in male meiosis. Chromosoma. 110, 228–240.

    CAS  PubMed  Google Scholar 

  80. Hardy R.W., Lindsley D.L., Livak K.J., Lewis B., Siversten A.V., Joslyn G.L., Edwards J., Bonaccorsi S. 1984. Cytogenetic analysis of a segment of the Y chromosome of Drosophila melanogaster. Genetics. 107, 591–610.

    CAS  PubMed  Google Scholar 

  81. Livak K.J. 1984. Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis. Genetics. 107, 611–634.

    CAS  PubMed  Google Scholar 

  82. Bozzetti M.P., Massari S., Finelli P., et al. 1995. The Ste locus, a component of the parasitic cry-Ste system of Drosophila melanogaster, encodes a protein that forms crystals in primary spermatocytes and mimics properties of the β-subunit of casein kinase 2. Proc. Natl. Acad. Sci. U. S. A. 92, 6067–6071.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Aravin A.A., Naumova N.M., Tulin A.V., Vagin V.V., Rozovsky Y.M., Gvozdev V.A. 2001. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr. Biol. 11, 1017–1027.

    CAS  PubMed  Google Scholar 

  84. Vagin V.V., Sigova A., Li C., Seitz H., Gvozdev V., Zamore P.D. 2006. A distinct small RNA pathway silences selfish genetic elements in the germline. Science. 313, 320–324.

    CAS  PubMed  Google Scholar 

  85. Malone C.D., Brennecke J., Dus M., Stark A., McCombie W.R., Sachidanandam R., Hannon G.J. 2009. Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell. 137, 522–535.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Nishida K.M., Okada T.N., Kawamura T., et al. 2009. Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines. EMBO J. 28, 3820–3831.

    CAS  PubMed  Google Scholar 

  87. Shoji M., Tanaka T., Hosokawa M., et al. 2009. The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline. Dev. Cell. 17, 775–787.

    CAS  PubMed  Google Scholar 

  88. Aravin A.A., van der Heijden G.W., Castañeda J., Vagin V.V., Hannon G.J., Bortvin A. 2009. Cytoplasmic compartmentalization of the fetal piRNA pathway in mice. PLoS Genet. 5, e1000764.

    PubMed Central  PubMed  Google Scholar 

  89. Carmell M.A., Girard A., van de Kant H.J., Bourc’his D., Bestor T.H., de Rooij D.G., Hannon G.J. 2007. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell. 12, 503–514.

    CAS  PubMed  Google Scholar 

  90. Kuramochi-Miyagawa S., Watanabe T., Gotoh K., et al. 2008. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev. 22, 908–917.

    CAS  PubMed  Google Scholar 

  91. Kuramochi-Miyagawa S., Kimura T., Ijiri T.W., et al. 2004. Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development. 131, 839–849.

    CAS  PubMed  Google Scholar 

  92. Tam O.H., Aravin A.A., Stein P., Girard A., et al. 2008. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature. 453, 534–538.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Watanabe T., Totoki Y., Toyoda A., et al. 2008. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature. 453, 539–543.

    CAS  PubMed  Google Scholar 

  94. Kibanov M.V., Gvozdev V.A., Olenina L.V. 2012. Germ granules in spermatogenesis of Drosophila: Evidences of contribution to the piRNA silencing. Commun. Integr. Biol. 5, 130–133.

    CAS  PubMed  Google Scholar 

  95. Kirino Y., Kim N., de Planell-Saguer M., Khandros E., Chiorean S., Klein P.S. Jongens TA, Mourelatos Z. 2009. Arginine methylation of Piwi proteins catalysed by dPRMT is required for Ago3 and Aub stability. Nature Cell Biol. 11, 652–658.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Kirino, Y., Vourekas, A., Sayed, N., de Lima Alves, F., Thomson, T., Lasko, P. Rappsilber J., Jongens T.A., Mourelatos Z. 2010. Arginine methylation of Aubergine mediates Tudor binding and germ plasm localization. RNA. 16, 70–78.

    CAS  PubMed  Google Scholar 

  97. Lehmann R., Nüsslein-Volhard C. 1991. The maternal gene nanos has a central role in posterior pattern formation of the Drosophila embryo. Development. 112, 679–691.

    CAS  PubMed  Google Scholar 

  98. Mahowald A.P. 2001. Assembly of the Drosophila germ plasm. Int. Rev. Cytol. 203, 187–213.

    CAS  PubMed  Google Scholar 

  99. Santos A.C., Lehmann R. 2004. Germ cell specification and migration in Drosophila and beyond. Curr. Biol. 14, R578–R 589.

    CAS  PubMed  Google Scholar 

  100. Rangan P., De Gennaro M., Jaime-Bustamante K., Coux R.X., Martinho R.G., Lehmann R. 2009. Temporal and spatial control of germ-plasm RNAs. Curr. Biol. 19, 72–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Hayashi K., de Sousa Lopes S.M., Surani M.A. 2007. Germ cell specification in mice. Science. 316, 394–396.

    CAS  PubMed  Google Scholar 

  102. Lasko P. 2013. The DEAD-box helicase Vasa: Evidence for a multiplicity of functions in RNA processes and developmental biology. Biochim. Biophys. Acta. 1829, 810–816.

    CAS  PubMed  Google Scholar 

  103. Styhler S., Nakamura A., Swan A., Suter B., Lasko P. 1998. vasa is required for GURKEN accumulation in the oocyte, and is involved in oocyte differentiation and germline cyst development. Development. 125, 1569–1578.

    CAS  PubMed  Google Scholar 

  104. Johnstone O., Lasko P. 2004. Interaction with eIF5B is essential for Vasa function during development. Development. 131, 4167–4178.

    CAS  PubMed  Google Scholar 

  105. Liu N., Han H., Lasko P. 2009. Vasa promotes Drosophila germline stem cell differentiation by activating mei-P26 translation by directly interacting with a (U)-rich motif in its 3′ UTR. Genes Dev. 23, 2742–2752.

    CAS  PubMed  Google Scholar 

  106. Neumüller R.A., Betschinger J., Fischer A., Bushati N., Poernbacher I., Mechtler K., Cohen S.M., Knoblich J.A. 2008. Mei-P26 regulates microRNAs and cell growth in the Drosophila ovarian stem cell lineage. Nature. 454, 241–245.

    PubMed Central  PubMed  Google Scholar 

  107. Page S.L., McKim K.S., Deneen B., van Hook T.L., Hawley R.S. 2000. Genetic studies of mei-P26 reveal a link between the processes that control germ cell proliferation in both sexes and those that control meiotic exchange in Drosophila. Genetics. 155, 1757–1772.

    CAS  PubMed  Google Scholar 

  108. Carrera P., Johnstone O., Nakamura A., Casanova J., Jäckle H., Lasko P. 2000. VASA mediates translation through interaction with a Drosophila yIF2 homolog. Mol. Cell. 5, 181–187.

    CAS  PubMed  Google Scholar 

  109. Nagao A., Mituyama T, Huang H., Chen D., Siomi M.C., Siomi H. 2010. Biogenesis pathways of piRNAs loaded onto AGO3 in the Drosophila testis. RNA. 16, 2503–2515.

    CAS  PubMed  Google Scholar 

  110. Olovnikov I.A., Kalmykova A.I. 2013. piRNA clusters as a main source of small RNAs in the animal germline. Biochemistry (Moscow). 78, 572–584.

    CAS  Google Scholar 

  111. Vagin V.V., Klenov M.S., Kalmykova A.I., Stolyarenko A.D., Kotelnikov R.N., Gvozdev V.A. 2004. The RNA interference proteins and vasa locus are involved in the silencing of retrotransposons in the female germline of Drosophila melanogaster. RNA Biol. 1, 54–58.

    CAS  PubMed  Google Scholar 

  112. Zhang F., Wang J., Xu J., et al. 2012. UAP56 couples piRNA clusters to the perinuclear transposon silencing machinery. Cell. 151, 871–884.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Tanaka S.S., Toyooka Y., Akasu R., Katoh-Fukui Y., Nakahara Y., Suzuki R., Yokoyama M., Noce T. 2000. The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes Dev. 14, 841–853.

    CAS  PubMed  Google Scholar 

  114. Toyooka Y., Tsunekawa N., Takahashi Y., Matsui Y., Satoh M., Noce T. 2000. Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development. Mech. Dev. 93, 139–149.

    CAS  PubMed  Google Scholar 

  115. Kuramochi-Miyagawa S., Watanabe T., Gotoh K., et al. 2010. MVH in piRNA processing and gene silencing of retrotransposons. Genes Dev. 24, 887–892.

    CAS  PubMed  Google Scholar 

  116. Nagamori I., Cruickshank V.A., Sassone-Corsi P. 2011. Regulation of an RNA granule during spermatogenesis: Acetylation of MVH in the chromatoid body of germ cells. J. Cell Sci. 124, 4346–4355.

    CAS  PubMed  Google Scholar 

  117. Castrillon D.H., Quade B.J., Wang T.Y., Quigley C., Crum C.P. 2000. The human VASA gene is specifically expressed in the germ cell lineage. Proc. Natl. Acad. Sci. U. S. A. 97, 9585–9590.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Medrano J.V., Ramathal C., Nguyen H.N., Simon C., Reijo Pera R.A. 2012. Divergent RNA-binding proteins, DAZL and VASA, induce meiotic progression in human germ cells derived in vitro. Stem Cells. 30, 441–451.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Sugimoto K., Koh E., Sin H.S., et al. 2009. Tissuespecific differentially methylated regions of the human VASA gene are potentially associated with maturation arrest phenotype in the testis. J. Hum. Genet. 54, 450–456.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Olenina.

Additional information

Original Russian Text © A.A. Kotov, N.V. Akulenko, M.V. Kibanov, L.V. Olenina, 2014, published in Molekulyarnaya Biologiya, 2014, Vol. 48, No. 1, pp. 22–35.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotov, A.A., Akulenko, N.V., Kibanov, M.V. et al. DEAD-Box RNA helicases in animal gametogenesis. Mol Biol 48, 16–28 (2014). https://doi.org/10.1134/S0026893314010063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893314010063

Keywords

Navigation