Skip to main content
Log in

Expression of genes involved in retinoic acid biosynthesis in human gastric cancer

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

All-trans-retinoic acid (ATRA) is the main biologically active metabolite of retinol (vitamin A) that is required for the regulation of processes such as embryogenesis, tissue differentiation, proliferation, and others. Multiple alcohol, retinol, and retinaldehyde dehydrogenases (ADHs, RDHs, and RALDHs), as well as aldo-keto reductases (AKRs) catalyze the biosynthesis of retinoic acid in humans. For many normal and neoplastic tissues, the key ATRA-synthesizing enzymes remain unknown. We identified ATRA-generating genes that are expressed in normal and malignant gastric tissues using the transcriptomic database analysis. Quantitative changes in the expression levels of these genes in gastric cancer were determined by semi-quantitative RT-PCR and real-time PCR. Significant decreases in the mRNA levels of genes that encode the enzymes that catalyze the reversible oxidation/reduction of retinol and retinaldehyde (ADH4, ADH1B, ADH1C, RDHL, AKR1B10, AKR1B1, and RDH12), as well as the oxidation of retinaldehyde (RALDH1) were revealed in most tumor samples. A sharp reduction in the expression levels of genes encoding the key enzymes that convert retinol and retinaldehyde to retinoic acid could lead to a significant decrease in the content of ATRA, the transcriptional regulator of many genes, which can in turn lead to the dysregulation of cell proliferation/differentiation and initiate the development of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADH:

alcohol dehydrogenase

AKR:

aldo-keto reductase

ATRA:

all-trans-retinoic acid

CRBP1:

Cellular retinol-binding protein-1

CYP26A1:

B1, C1 are proteins of CYP26 family (cytochrome P450-dependent monooxigenases)

RALDH:

retinaldehyde dehydrogenase

RDH:

retinol dehydrogenase

RefExA:

Reference database for gene Expression Analysis

PCR:

polymerase chain reaction

RT-PCR:

reverse transcription PCR

References

  1. Blomhoff R., Blomhoff H.K. 2006. Overview of retinoid metabolism and function. J. Neurobiol. 66, 606–630.

    Article  PubMed  CAS  Google Scholar 

  2. Harrison E.H. 2012. Mechanisms involved in the intestinal absorption of dietary vitamin A and provitamin A carotenoids. Biochim. Biophys. Acta. 1821, 70–77.

    Article  PubMed  CAS  Google Scholar 

  3. Napoli J.L. 2012. Physiological insights into all-trans-retinoic acid biosynthesis. Biochim. Biophys. Acta. 1821, 152–167.

    Article  PubMed  CAS  Google Scholar 

  4. Kumar S., Sandell L.L., Trainor P.A., Koentgen F., Duester G. 2012. Alcohol and aldehyde dehydrogenases: Retinoid metabolic effects in mouse knockout models. Biochim. Biophys. Acta. 1821, 198–205.

    Article  PubMed  CAS  Google Scholar 

  5. Duester G., Farrés J., Felder M.R., Holmes R.S., Höög J.O., Parés X., Plapp B.V., Yin S.J., Jörnvall H. 1999. Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family. Biochem. Pharmacol. 58, 389–395.

    Article  PubMed  CAS  Google Scholar 

  6. Estonius M., Svensson S., Höög J.-O. 1996. Alcohol dehydrogenase in human tissues: Localization of transcripts coding for five classes of the enzyme. FEBS Lett. 397, 338–342.

    Article  PubMed  CAS  Google Scholar 

  7. Molotkov A., Deltour L., Foglio M.H., Cuenca A.E., Duester G. 2002. Distinct retinoid metabolic functions for alcohol dehydrogenase genes Adh1 and Adh4 in protection against vitamin A toxicity or deficiency revealed in double null mutant mice. J. Biol. Chem. 277, 13804–13811.

    Article  PubMed  CAS  Google Scholar 

  8. Molotkov A., Fan X., Deltour L., Foglio M.H., Martras S., Farrés J., Parés X., Duester G. 2002. Stimulation of retinoic acid production and growth by ubiquitously expressed alcohol dehydrogenase Adh3. Proc. Natl. Acad. Sci. U. S. A. 99, 5337–5342.

    Article  PubMed  CAS  Google Scholar 

  9. Gallego O., Belyaeva O.V., Porté S., Ruiz F.X., Stetsenko A.V., Shabrova E.V., Kostereva N.V., Farrés J., Parés X., Kedishvili N.Y. 2006. Comparative functional analysis of human medium-chain dehydrogenases, short-chain dehydrogenases/reductases, and aldo-keto reductases with retinoids. Biochem. J. 399, 101–109.

    Article  PubMed  CAS  Google Scholar 

  10. Parés X., Farrés J., Kedishvili N., Duester G. 2008. Medium- and short-chain dehydrogenase/reductase gene and protein families: Medium-chain and short-chain dehydrogenases/reductases in retinoid metabolism. Cell. Mol. Life Sci. 65, 3936–3949.

    Article  PubMed  Google Scholar 

  11. Lidén M., Eriksson U. 2006. Understanding retinol metabolism: Structure and function of retinol dehydrogenases. J. Biol. Chem. 281, 13001–13004.

    Article  PubMed  Google Scholar 

  12. Kallberg Y., Oppermann U., Persson B. 2010. Classification of the short-chain dehydrogenase/reductase superfamily using hidden Markov models. FEBS J. 277, 2375–2386.

    Article  PubMed  CAS  Google Scholar 

  13. Belyaeva O.V., Johnson M.P., Kedishvili N.Y. 2008. Kinetic analysis of human enzyme RDH10 defines the characteristics of a physiologically relevant retinol dehydrogenase. J. Biol. Chem. 28, 20299–20308.

    Article  Google Scholar 

  14. Belyaeva O.V., Korkina O.V., Stetsenko A.V., Kim T., Nelson P.S., Kedishvili N.Y. 2005. Biochemical properties of purified human retinol dehydrogenase 12 (RDH12): Catalytic efficiency toward retinoids and C9 aldehydes and effects of cellular retinol-binding protein type I (CRBPI) and cellular retinaldehyde-binding protein (CRALBP) on the oxidation and reduction of retinoids. Biochemistry. 44, 7035–7047.

    Article  PubMed  CAS  Google Scholar 

  15. Crosas B., Hyndman D.J., Gallego O., Martras S., Parés X., Flynn T.G., Farrés J. 2003. Human aldose reductase and human small intestine aldose reductase are efficient retinal reductases: Consequences for retinoid metabolism. Biochem. J. 373, 973–979.

    Article  PubMed  CAS  Google Scholar 

  16. Ross A.C., Zolfaghari R. 2011. Cytochrome P450s in the regulation of cellular retinoic acid metabolism. Annu. Rev. Nutr. 31, 65–87.

    Article  PubMed  CAS  Google Scholar 

  17. Jette C., Peterson P.W., Sandoval I.T., Manos E.J., Hadley E., Ireland C.M., Jones D.A. 2004. The tumor suppressor adenomatous polyposis coli and caudal related homeodomain protein regulate expression of retinol dehydrogenase L. J. Biol. Chem. 279, 34397–34405.

    Article  PubMed  CAS  Google Scholar 

  18. Pasquali D., Thaller C., Eichele G. 1996. Abnormal level of retinoic acid in prostate cancer tissues. J. Clin. Endocrinol. Metab. 81, 2186–2191.

    Article  PubMed  CAS  Google Scholar 

  19. Mira Y.L.R., Zheng W.L., Kuppumbatti Y.S., Rexer B., Jing Y., Ong D.E. 2000. Retinol conversion to retinoic acid is impaired in breast cancer cell lines relative to normal cells. J. Cell Physiol. 185, 302–309.

    Article  Google Scholar 

  20. Williams S.J., Cvetkovic D., Hamilton T.C. 2009. Vitamin A metabolism is impaired in human ovarian cancer. Gynecol. Oncol. 112, 637–645.

    Article  PubMed  CAS  Google Scholar 

  21. Matsumoto M., Yokoyama H., Suzuki H., Shiraishi-Yokoyama H., Hibi T. 2005. Retinoic acid formation from retinol in the human gastric mucosa: Role of class IV alcohol dehydrogenase and its relevance to morphological changes. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G429–433.

    Article  PubMed  CAS  Google Scholar 

  22. Jemal A., Bray F., Center M.M., Ferlay J., Ward E., Forman D. 2011. Global cancer statistics. CA Cancer J. Clin. 61, 69–90.

    Article  PubMed  Google Scholar 

  23. Davydov M.I., Aksel’ E.M. 2011. Morbidity and mortality due to malignant neoplasms in Russia and CIS countries in 2009. Vestn. Ross. Onkol. Hauch. Tsentra im. N.N. Blokhina Ross. Akad. Med. Sci., 22, Suppl. 1, 54–123.

    Google Scholar 

  24. Yokoyama H., Matsumoto M., Shiraishi H., Miyagi M., Kato And S., Ishii H. 2001. Nicotinamide adenine dinucleotide-dependent retinoic acid formation from retinol in the human gastric mucosa: Inhibition by ethanol, acetaldehyde, and H2 blockers. Alcohol. Clin. Exp. Res. 25, 24S–28S.

    Article  PubMed  CAS  Google Scholar 

  25. Persson C., Sasazuki S., Inoue M., Kurahashi N., Iwasaki M., Miura T., Ye W., Tsugane S.; JPHC Study Group. 2008. Plasma levels of carotenoids, retinol and tocopherol and the risk of gastric cancer in Japan: A nested case-control study. Carcinogenesis. 29, 1042–1048.

    Article  PubMed  CAS  Google Scholar 

  26. Larsson S.C., Bergkvist L., Näslund I., Rutegård J., Wolk A. 2007. Vitamin A, retinol, and carotenoids and the risk of gastric cancer: A prospective cohort study. Am. J. Clin. Nutr. 85, 497–503

    PubMed  CAS  Google Scholar 

  27. Rhodes D.R., Yu J., Shanker K., Deshpande N., Varambally R., Ghosh D., Barrette T., Pandey A., Chinnaiyan A.M. 2004. ONCOMINE: A cancer microarray database and integrated data-mining platform. Neoplasia. 6, 1–6.

    PubMed  CAS  Google Scholar 

  28. Manzeniuk O.Yu., Malakho S.G., Pekhov V.M., Kosorukova I.S., Poltaraus A.B. 2006. Characterization of the universal Russian reagent sets for real-time PCR and its application to molecular oncodiagnosis. Mol. Biol. (Moscow). 40, 305–311.

    Article  CAS  Google Scholar 

  29. Zhang J.P., Chen X.Y., Li J.S. 2007. Effects of all-trans-retinoic on human gastric cancer cells BGC-823. J. Dig. Dis. 8, 29–34.

    Article  PubMed  CAS  Google Scholar 

  30. Fukumoto S., Yamauchi N., Moriguchi H., Hippo Y., Watanabe A., Shibahara J., Taniguchi H., Ishikawa S., Ito H., Yamamoto S., Iwanari H., Hironaka M., Ishikawa Y., Niki T., Sohara Y., Kodama T., Nishimura M., Fukayama M., Dosaka-Akita H., Aburatani H. 2005. Overexpression of the aldo-keto reductase family protein AKR1B10 is highly correlated with smokers’ non-small cell lung carcinomas. Clin. Cancer Res. 11, 1776–1785.

    Article  PubMed  CAS  Google Scholar 

  31. Leclerc J., Courcot-Ngoubo Ngangue E., Cauffiez C., Allorge D., Pottier N., Lafitte J.J., Debaert M., Jaillard S., Broly F., Lo-Guidice J.M. 2011. Xenobiotic metabolism and disposition in human lung: Transcript profiling in non-tumoral and tumoral tissues. Biochimie. 93, 1012–1027.

    Article  PubMed  CAS  Google Scholar 

  32. Chiang C.P., Jao S.W., Lee S.P., Chen P.C., Chung C.C., Lee S.L., Nieh S., Yin S.J. 2012. Expression pattern, ethanol-metabolizing activities, and cellular localization of alcohol and aldehyde dehydrogenases in human large bowel: Association of the functional polymorphisms of ADH and ALDH genes with hemorrhoids and colorectal cancer. Alcohol. 46, 37–49.

    Article  PubMed  CAS  Google Scholar 

  33. Zaitseva M., Vollenhoven B.J., Rogers P.A. 2007. Retinoic acid pathway genes show significantly altered expression in uterine fibroids when compared with normal myometrium. Mol. Hum. Reprod. 13, 577–585.

    Article  PubMed  CAS  Google Scholar 

  34. Ashla A.A., Hoshikawa Y., Tsuchiya H., Hashiguchi K., Enjoji M., Nakamuta M., Taketomi A., Maehara Y., Shomori K., Kurimasa A., Hisatome I., Ito H., Shiota G. 2010. Genetic analysis of expression profile involved in retinoid metabolism in non-alcoholic fatty liver disease. Hepatol. Res. 40, 594–604.

    Article  PubMed  CAS  Google Scholar 

  35. O’Shaughnessy P.J., Abel M., Charlton H.M., Hu B., Johnston H., Baker P.J. 2007. Altered expression of genes involved in regulation of vitamin A metabolism, solute transportation, and cytoskeletal function in the androgen-insensitive tfm mouse testis. Endocrinology. 148, 2914–2924.

    Article  PubMed  Google Scholar 

  36. Collins M.D., Eckhoff C., Chahoud I., Bochert G., Nau H. 1992. 4-Methylpyrazole partially ameliorated the teratogenicity of retinol and reduced the metabolic formation of all-trans-retinoic acid in the mouse. Arch. Toxicol. 66, 652–659.

    Article  PubMed  CAS  Google Scholar 

  37. Chetyrkin S.V., Belyaeva O.V., Gough W.H., Kedishvili N.Y. 2001. Characterization of a novel type of human microsomal 3α-hydroxysteroid dehydrogenase: Unique tissue distribution and catalytic properties. J. Biol. Chem. 276, 22278–22286.

    Article  PubMed  CAS  Google Scholar 

  38. Wang J., Chai X., Eriksson U., Napoli J.L. 1999. Activity of human 11-cis-retinol dehydrogenase (Rdh5) with steroids and retinoids and expression of its mRNA in extra-ocular human tissue. Biochem. J. 338, 23–27.

    Article  PubMed  CAS  Google Scholar 

  39. Chase J.R., Poolman M.G., Fell D.A. 2009. Contribution of NADH increases to ethanol’s inhibition of retinol oxidation by human ADH isoforms. Alcohol. Clin. Exp. Res. 33, 571–580.

    Article  PubMed  CAS  Google Scholar 

  40. Yin S.J., Chou C.F., Lai C.L., Lee S.L., Han C.L. 2003. Human class IV alcohol dehydrogenase: Kinetic mechanism, functional roles and medical relevance. Chem. Biol. Interact. 143/144, 219–227.

    Article  Google Scholar 

  41. Molotkov A., Duester G. 2003. Genetic evidence that retinaldehyde dehydrogenase Raldh1 (Aldh1a1) functions downstream of alcohol dehydrogenase Adh1 in metabolism of retinol to retinoic acid. J. Biol. Chem. 278, 36085–36090.

    Article  PubMed  CAS  Google Scholar 

  42. Mashkova T.D., Oparina N.Yu., Zinov’eva O.L., Kropotova E.S., Dubovaya V.I., Poltaraus A.B., Fridman M.V., Kopantsev E.P., Vinogradova T.V., Zinov’eva M.V., Laktionov K.K., Kasymova O.T., Zborovskaya I.B., Sverdlov E.D., Kisselev L.L. 2006. Transcription of TIMP3, DAPK1, and AKR1B10 in squamous-cell lung cancer. Mol. Biol. (Moscow). 40, 945–951.

    Article  CAS  Google Scholar 

  43. Scuric Z., Stain S.C., Anderson W.F., Hwang J.J. 1998. New member of aldose reductase family proteins over-expressed in human hepatocellular carcinoma. Hepatology. 27, 943–950.

    Article  PubMed  CAS  Google Scholar 

  44. Kropotova E.S., Tychko R.A., Zinov’eva O.L., Zyryanova A.F., Khankin S.L., Cherkes V.L., Aliev V.A., Beresten S.F., Oparina N.Yu., Mashkova T.D. 2010. Downregulation of AKR1B10 expression in colorectal cancer. Mol. Biol. (Moscow). 44, 216–222.

    Article  CAS  Google Scholar 

  45. Martin H.J., Maser E. 2009. Role of human aldoketoreductase AKR1B10 in the protection against toxic aldehydes. Chem. Biol. Interact. 178, 145–150.

    Article  PubMed  CAS  Google Scholar 

  46. Westerlund M., Belin A.C., Felder M.R., Olson L., Galter D. 2007. High and complementary expression patterns of alcohol and aldehyde dehydrogenases in the gastrointestinal tract: implications for Parkinson’s disease. FEBS J. 274, 1212–1223.

    Article  PubMed  CAS  Google Scholar 

  47. Roberts E.S., Vaz A.D.N., Coon M.J. 1992. Role of isozymes of rabbit microsomal cytochrome P-450 in the metabolism of retinoic acid, retinol, and retinal. Mol. Pharmacol. 41, 427–433.

    PubMed  CAS  Google Scholar 

  48. Tang X.H., Gudas L.J. 2011. Retinoids, retinoic acid receptors, and cancer. Annu. Rev. Pathol. 6, 345–364.

    Article  PubMed  CAS  Google Scholar 

  49. Li J., Ng E.K., Ng Y.P., Wong C.Y., Yu J., Jin H., Cheng V.Y., Go M.Y., Cheung P.K., Ebert M.P., Tong J., To K.F., Chan F.K., Sung J.J., Ip N.Y., Leung W.K. 2009. Identification of retinoic acid-regulated nuclear matrix-associated protein as a novel regulator of gastric cancer. Br. J. Cancer. 101, 691–698.

    Article  PubMed  CAS  Google Scholar 

  50. Hu K.W., Chen F.H., Ge J.F., Cao L.Y., Li H. 2012. Retinoid receptors in gastric cancer: Expression and influence on prognosis. Asian Pac. J. Cancer Prev. 13, 1809–1817.

    Article  PubMed  Google Scholar 

  51. Jiang S.Y., Shen S.R., Shyu R.Y., Yu J.C., Harn H.J., Yeh M.Y., Lee M.M., Chang Y.C. 1999. Expression of nuclear retinoid receptors in normal, premalignant and malignant gastric tissues determined by in situ hybridization. Br. J. Cancer. 80, 206–214.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Mashkova.

Additional information

Original Russian Text © E.S. Kropotova, O.L. Zinov’eva, A.F. Zyryanova, E.L. Choinzonov, S.G. Afanas’ev, N.V. Cherdyntseva, S.F. Beresten, N.Yu. Oparina, T.D. Mashkova, 2013, published in Molekulyarnaya Biologiya, 2013, Vol. 47, No. 2, pp. 317–330.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kropotova, E.S., Zinov’eva, O.L., Zyryanova, A.F. et al. Expression of genes involved in retinoic acid biosynthesis in human gastric cancer. Mol Biol 47, 280–292 (2013). https://doi.org/10.1134/S0026893313020076

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893313020076

Keywords

Navigation