Skip to main content
Log in

The influence of opioid peptides on matrix metalloproteinase-9 and urokinase plasminogen activator expression in three cancer cell lines

  • Molecular Biology of the Cell
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA) regulate proteolysis of the extracellular matrix (ECM) and as a consequence are involved in a number of physiological and pathological states, including cancer. A crucial feature of cancer progression and metastasis is the disruption of the ECM and spreading of proliferating cancer cells. Over-expression of MMPs and uPA is common for most types of cancers and correlates well with the adverse prognosis. Compounds able to modulate the activity of these proteolytic enzymes may become important agents in cancer therapy. In the present study, we examined the effect of the μ-opioid receptor selective peptide, morphiceptin, and its two synthetic analogs on mRNA and protein levels of MMP-9 and uPA in three human cancer cell lines: MCF-7, HT-29, and SHSY5Y. Our findings indicate that in all three cell lines morphiceptin and its analogs attenuated MMP-9 expression and secretion and that this effect is not mediated by opioid receptors but is under control of the nitric oxide system. On the other hand, tested opioids up-regulated uPA levels through a mechanism that involved opioid-receptors. Different pathways by which opioid peptides exert their action in cancer cells can explain their contradictory influence on the level of cancer markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ECM:

extracellular matrix

eNOS:

endothelial nitric oxide synthase

GAPDH:

glyceraldehyde 3-phosphate dehydrogenase

MMPs:

matrix metalloproteinases

MMP-2:

gelatinase A

MMP-9:

gelatinase B

NO:

nitric oxide

PBS:

phosphate buffered saline

uPA:

urokinase plasminogen activator

References

  1. Geiger T.R., Peeper D.S. 2009. Metastasis mechanisms. Biochim. Biophys. Acta. 1796, 293–308.

    PubMed  CAS  Google Scholar 

  2. Engbring J.A., Kleinman H.K. 2003. The basement membrane matrix in malignancy. J. Pathol. 200, 465–470.

    Article  PubMed  CAS  Google Scholar 

  3. Widel M.S., Widel M. 2006. Mechanisms of metastasis and molecular markers of malignant tumor progression: 1. Colorectal cancer. Postepy Hig. Med. Dosw. (Online) 60, 453–470.

    Google Scholar 

  4. Das S., Banerji A., Frei E., Chatterjee A. 2008. Rapid expression and activation of MMP-2 and MMP-9 upon exposure of human breast cancer cells (MCF-7) to fibronectin in serum free medium. Life Sci. 82, 467–476.

    Article  PubMed  CAS  Google Scholar 

  5. Zhang W., Yang H.C., Wang Q., Yang Z.J., Chen H., Wang S.M., Pan Z.M., Tang B.J., Li Q.Q., Li L. 2011. Clinical value of combined detection of serum matrix metalloproteinase-9, heparanase, and cathepsin for determining ovarian cancer invasion and metastasis. Anticancer Res. 31, 3423–3428.

    PubMed  CAS  Google Scholar 

  6. Duffy M.J. 2004. The urokinase plasminogen activator system: Role in malignancy. Curr. Pharm. Des. 10, 39–49.

    Article  PubMed  CAS  Google Scholar 

  7. Duffy M.J., Duggan C. 2004. The urokinase plasminogen activator system: A rich source of tumour markers for the individualised management of patients with cancer. Clin. Biochem. 37, 541–548.

    Article  PubMed  CAS  Google Scholar 

  8. Holst-Hansen C., Johannessen B., Hoyer-Hansen G., Romer J., Ellis V., Brunner N. 1996. Urokinase-type plasminogen activation in three human breast cancer cell lines correlates with their in vitro invasiveness. Clin. Exp. Metastasis. 14, 297–307.

    PubMed  CAS  Google Scholar 

  9. Morgan H., Hill P.A. 2005. Human breast cancer cellmediated bone collagen degradation requires plasminogen activation and matrix metalloproteinase activity. Cancer Cell. Int. 5, 1.

    Article  PubMed  Google Scholar 

  10. Harbeck N., Kates R.E., Gauger K., Willems A., Kiechle M., Magdolen V., Schmitt M. 2004. Urokinase-type plasminogen activator (uPA) and its inhibitor PAI-I: Novel tumor-derived factors with a high prognostic and predictive impact in breast cancer. Thromb. Haemost. 91, 450–456.

    PubMed  CAS  Google Scholar 

  11. Dano K., Behrendt N., Hoyer-Hansen G., Johnsen M., Lund L.R., Ploug M., Römer J. 2005. Plasminogen activation and cancer. Thromb. Haemost. 93, 676–681.

    PubMed  CAS  Google Scholar 

  12. Han B., Nakamura M., Mori I., Nakamura Y., Kakudo K. 2005 Urokinase-type plasminogen activator system and breast cancer (Review). Oncol. Rep. 14, 105–112.

    PubMed  CAS  Google Scholar 

  13. Strek M., Gorlach S., Podsedek A., Sosnowska D., Koziolkiewicz M., Hrabec Z, Hrabec, E. 2007. Procyanidin oligomers from Japanese quince (Chaenomeles japonica) fruit inhibit activity of MMP-2 and MMP-9 metalloproteinases. J. Agric. Food Chem. 55, 6447–6452.

    Article  PubMed  CAS  Google Scholar 

  14. Wyrębska A., Gach K., Szemraj J., Szewczyk K., Hrabem E., Koszuk J., Janecki T., Janecka, A. 2012. Comparison of anti-invasive activity of parthenolide and 3-isopropyl-2-methyl-4-methyleneisoxazolidin-5-one (MZ-6), a new compound with alpha-methylene-gamma-lactone motif, on two breast cancer cell lines. Chem. Biol. Drug Des. 79, 112–120.

    Article  PubMed  Google Scholar 

  15. Wang X.Y., Wang Y., Liu H.C. 2011. Tamoxifen lowers the MMP-9/TIMP-1 ratio and inhibits the invasion capacity of ER-positive non-small cell lung cancer cells. Biomed. Pharmacother. 65, 525–528.

    Article  PubMed  Google Scholar 

  16. Gach K., do-Rego J.C., Fichna J., Storr M., Delbro D., Toth G., Janecka A. 2010. Synthesis and biological evaluation of novel peripherally active morphiceptin analogs. Peptides. 31, 1617–1624.

    Article  PubMed  CAS  Google Scholar 

  17. Pfeilschifter J., Eberhardt W., Huwiler A. 2001. Nitric oxide and mechanisms of redox signalling: Matrix and matrix-metabolizing enzymes as prime nitric oxide targets. Eur. J. Pharmacol. 429, 279–286.

    Article  PubMed  CAS  Google Scholar 

  18. Shariftabrizi A., Nifli A.P., Ansari M., Saadat F., Ebrahimkhani M.R., Alizadeh N., Nasseh A., Alexaki V.I., Dehpour A.R., Castanas E., Khorramizadeh M.R. 2006. Matrix metalloproteinase 2 secretion in WEHI 164 fibrosarcoma cells is nitric oxide-related and modified by morphine. Eur. J. Pharmacol. 530, 33–39.

    Article  PubMed  CAS  Google Scholar 

  19. Gach K., Wyr bska A., Fichna J., Janecka A. 2011. The role of morphine in regulation of cancer cell growth. Naunyn Schmiedebergs Arch. Pharmacol. 384, 221–230.

    Article  PubMed  CAS  Google Scholar 

  20. Tegeder I., Geisslinger G. 2004. Opioids as modulators of cell death and survival: Unraveling mechanisms and revealing new indications. Pharmacol. Rev. 56, 351–369.

    Article  PubMed  CAS  Google Scholar 

  21. Mathew B., Lennon F., Siegler J., Gerhold L., Mambetsariev N., Moreno-Vinasco L., Garcia J., Salgia R., Moss J., Singleton P. 2009. The mu-opioid receptor regulates Lewis lung carcinoma tumor growth and metastasis. Mol. Cancer Ther. 8, C79–79C.

    Article  Google Scholar 

  22. Kawase M., Sakagami H., Furuya K., Kikuchi H., Nishikawa H., Motohashi N., Morimoto Y., Varga, A., Molnár J. 2002. Cell death-inducing activity of opiates in human oral tumor cell lines. Anticancer Res. 22, 211–214.

    PubMed  CAS  Google Scholar 

  23. Koodie L., Ramakrishnan S., Roy S. 2010. Morphine suppresses tumor angiogenesis through a HIF-1alpha/p38MAPK pathway. Am. J. Pathol. 177, 984–997.

    Article  PubMed  CAS  Google Scholar 

  24. Harimaya Y., Koizumi K., Andoh T., Nojima H., Kuraishi Y., Saiki I. 2002. Potential ability of morphine to inhibit the adhesion, invasion and metastasis of metastatic colon 26-L5 carcinoma cells. Cancer Lett. 187, 121–127.

    Article  PubMed  CAS  Google Scholar 

  25. Moss J., Rosow C.E. 2008. Development of peripheral opioid antagonists: New insights into opioid effects. Mayo Clin. Proc. 83, 1116–1130.

    Article  PubMed  CAS  Google Scholar 

  26. Wang C.Z., Li X.L., Sun S., Xie J.T., Aung H.H., Tong R., McEntee E., Yuan C.S. 2009. Methylnaltrexone, a peripherally acting opioid receptor antagonist, enhances tumoricidal effects of 5-Fu on human carcinoma cells. Anticancer Res. 29, 2927–2932.

    PubMed  CAS  Google Scholar 

  27. Singleton P.A., Moss J. 2010. Effect of perioperative opioids on cancer recurrence: A hypothesis. Future Oncol. 6, 1237–1242.

    Article  PubMed  CAS  Google Scholar 

  28. Gach K., Szemraj J., Wyrbska A., Janecka A. 2011. The influence of opioids on matrix metalloproteinase-2 and -9 secretion and mRNA levels in MCF-7 breast cancer cell line. Mol. Biol. Rep. 38, 1231–1236.

    Article  PubMed  CAS  Google Scholar 

  29. Nylund G., Pettersson A., Bengtsson C., Khorram-Manesh A., Nordgren S., Delbro D.S. 2008. Functional expression of mu-opioid receptors in the human colon cancer cell line, HT-29, and their localization in human colon. Dig. Dis. Sci. 53, 461–466.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Janecka.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gach, K., Wyrębska, A., Szemraj, J. et al. The influence of opioid peptides on matrix metalloproteinase-9 and urokinase plasminogen activator expression in three cancer cell lines. Mol Biol 46, 796–801 (2012). https://doi.org/10.1134/S0026893312060052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893312060052

Keywords

Navigation