Molecular Biology

, Volume 46, Issue 3, pp 349–361 | Cite as

Nonviral delivery systems for small interfering RNAs

  • K. V. Glebova
  • A. V. Marakhonov
  • A. V. Baranova
  • M. Yu. Skoblov
Molecular Biomedicine Special Issue


RNA interference is now considered to be the most powerful and promising tool for gene-targeted therapy. Several problems are still to be solved for its successful use in medicine. One of the main issues is efficient siRNA delivery. The review considers various types of nonviral siRNA delivery systems.


RNA interference siRNA siRNA delivery 







1,2-dioleoyl-3-thrimethylammonium propane


green fluo-rescent protein


red fluorescent protein


small interfering RNA


single-wall carbon nanotube


tumor necrosis factor α


magnetic resonance imaging


polyethylene glycol








β-cyclodextrin-containing polycations


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aigner A.J. 2006. Delivery systems for the direct application of siRNAs to induce RNA interference (RNAi) in vivo. Biomed. Biotechnol. 4, 71659.Google Scholar
  2. 2.
    Kim E.J., Shim G., Kim K., Kwon I.C., Oh Y.K., Shim C.K. 2009. Hyaluronic acid complexed to biodegradable poly L-arginine for targeted delivery of siRNAs. J. Gene Med. 11, 791–803.PubMedCrossRefGoogle Scholar
  3. 3.
    Bumcrot D., Manoharan M., Koteliansky V., Sah D.W. 2006. RNAi therapeutics: A potential new class of pharmaceutical drugs. Nature Chem. Biol. 2, 711–719.CrossRefGoogle Scholar
  4. 4.
    Akhtar S., Benter I. 2007. Toxicogenomics of nonviral drug delivery systems for RNAi: potential impact on siRNA-mediated gene silencing activity and specificity. Adv. Drug Deliv. Rev. 59, 164–182.PubMedCrossRefGoogle Scholar
  5. 5.
    Soriano P., Dijkstra J., Legrand A., Spanjer H., Londos-Gagliardi D., Roerdink F., Scherphof G., Nicolau C. 1983. Targeted and nontargeted liposomes for in vivo transfer to rat liver cells of a plasmid containing the preproinsulin I gene. Proc. Natl. Acad. Sci. U. S. A. 80, 7128–7131.PubMedCrossRefGoogle Scholar
  6. 6.
    Felgner P.L., Ringold G.M. 1989. Cationic liposome-mediated transfection. Nature. 337, 387–388.PubMedCrossRefGoogle Scholar
  7. 7.
    Ozpolat B., Sood A.K., Lopez-Berestein G. 2010. Nanomedicine-based approaches for the delivery of siRNA in cancer. J. Intern. Med. 267, 44–53.PubMedCrossRefGoogle Scholar
  8. 8.
    Arnold A.S., Tang Y.L., Qian K., Shen L., Valencia V., Phillips M.I., Zhang Y.C. 2007. Specific beta1-adrenergic receptor silencing with small interfering RNA lowers high blood pressure and improves cardiac function in myocardial ischemia. J. Hypertens. 25, 197–205.PubMedCrossRefGoogle Scholar
  9. 9.
    Sorensen D.R., Leirdal M., Sioud M. 2003. Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J. Mol. Biol. 327, 761–766.PubMedCrossRefGoogle Scholar
  10. 10.
    Peng P.H., Huang H.S., Lee Y.J., Chen Y.S., Ma M.C. 2009. Novel role for the delta-opioid receptor in hypoxic preconditioning in rat retinas. J. Neurochem. 108, 741–754.PubMedCrossRefGoogle Scholar
  11. 11.
    Murata M., Takanami T., Shimizu S., Kubota Y., Horiuchi S., Habano W., Ma J.X., Sato S. 2006. Inhibition of ocular angiogenesis by diced small interfering RNAs (siRNAs) specific to vascular endothelial growth factor (VEGF). Curr. Eye Res. 31, 171–180.PubMedCrossRefGoogle Scholar
  12. 12.
    Baker-Herman T.L., Fuller D.D., Bavis R.W., Zabka A.G., Golder F.J., Doperalski N.J., Johnson R.A., Watters J.J., Mitchell G.S. 2004. BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia. Nature Neurosci. 7, 48–55.PubMedCrossRefGoogle Scholar
  13. 13.
    Nakamura H., Siddiqui S.S., Shen X., Malik A.B., Pulido J.S., Kumar N.M., Yue B.Y. 2004. RNA interference targeting transforming growth factor-beta type II receptor suppresses ocular inflammation and fibrosis. Mol. Vis. 10, 703–711.PubMedGoogle Scholar
  14. 14.
    Verma U.N., Surabhi R.M., Schmaltieg A., Becerra C., Gaynor R.B. 2003. Small interfering RNAs directed against beta-catenin inhibit the in vitro and in vivo growth of colon cancer cells. Clin. Cancer Res. 9, 1291–1300.PubMedGoogle Scholar
  15. 15.
    Chien P.Y., Wang J., Carbonaro D., Lei S., Miller B., Sheikh S., Ali S.M., Ahmad M.U., Ahmad I. 2005. Novel cationic cardiolipin analogue-based liposome for efficient DNA and small interfering RNA delivery in vitro and in vivo. Cancer Gene Ther. 12, 321–328.PubMedCrossRefGoogle Scholar
  16. 16.
    Khoury M., Louis-Plence P., Escriou V., Noel D., Largeau C., Cantos C., Scherman D., Jorgensen C., Apparailly F. 2006. Efficient new cationic liposome formulation for systemic delivery of small interfering RNA silencing tumor necrosis factor alpha in experimental arthritis. Arthr. Rheum. 54, 1867–1877.CrossRefGoogle Scholar
  17. 17.
    Miyawaki-Shimizu K., Predescu D., Shimizu J., Broman M., Predescu S., Malik A.B. 2006. siRNA-induced caveolin-1 knockdown in mice increases lung vascular permeability via the junctional pathway. Am. J. Physiol. Lung Cell Mol. Physiol. 290, L405–L413.PubMedCrossRefGoogle Scholar
  18. 18.
    Chono S., Li S.D., Conwell C.C. Huang L. 2008. An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor. J. Control. Release. 131, 64–69.PubMedCrossRefGoogle Scholar
  19. 19.
    Wu S.Y., McMillan N.A. 2009. Lipidic systems for in vivo siRNA delivery. AAPS J. 11, 639–652.PubMedCrossRefGoogle Scholar
  20. 20.
    Judge A.D., Robbins M., Tavakoli I., Levi J., Hu L., Fronda A., Ambegia E., McClintock K., MacLachlan I. 2009. Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice. J. Clin. Invest. 119, 661–673.PubMedCrossRefGoogle Scholar
  21. 21.
    Carmona S., Jorgensen M.R., Kolli S., Crowther C., Salazar F.H., Marion P.L., Fujino M., Natori Y., Thanou M., Arbuthnot P., Miller A.D. 2009. Controlling HBV replication in vivo by intravenous administration of triggered PEGylated siRNA-nanoparticles. Mol. Pharm. 6, 706–717.PubMedCrossRefGoogle Scholar
  22. 22.
    Akinc A., Zumbuehl A., Goldberg M., Leshchiner E.S., Busini V., Hossain N., Bacallado S.A., Nguyen D.N., Fuller J., Alvarez R., Borodovsky A., Borland T., Constien R., de Fougerolles A., Dorkin J.R., Narayanannair J.K, Jayaraman M., John M., Koteliansky V., Manoharan M., Nechev L., Qin J., Racie T., Raitcheva D., Rajeev K.G., Sah D.W., Soutschek J., Toudjarska I., Vornlocher H.P., Zimmermann T.S., Langer R., Anderson D.G. 2008. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nature Biotechnol. 26, 561–569.CrossRefGoogle Scholar
  23. 23.
    Pirollo K.F., Rait A., Zhou Q., Hwang S.H., Dagata J.A., Zon G., Hogrefe R.I., Palchik G., Chang E.H. 2007. Materializing the potential of small interfering RNA via a tumor-targeting nanodelivery system. Cancer Res. 67, 2938–2943.PubMedCrossRefGoogle Scholar
  24. 24.
    Gilmore I.R., Fox S.P., Hollins A.J., Sohail M., Akhtar S. 2004. The design and exogenous delivery of siRNA for post-transcriptional gene silencing. J. Drug Target. 12, 315–340.PubMedCrossRefGoogle Scholar
  25. 25.
    Gilmore I.R., Fox S.P., Hollins A.J., Akhtar S. 2006. Delivery strategies for siRNA-mediated gene silencing. Curr. Drug Deliv. 3, 147–155.PubMedCrossRefGoogle Scholar
  26. 26.
    Omidi Y., Hollins A.J., Benboubetra M., Drayton R., Benter I.F., Akhtar S. 2003. Toxicogenomics of non-viral vectors for gene therapy: A microarray study of lipofectin- and oligofectamine-induced gene expression changes in human epithelial cells. J. Drug Target. 11, 311–323.PubMedCrossRefGoogle Scholar
  27. 27.
    Judge A.D., Sood V., Shaw J.R., Fang D., McClintock K., MacLachlan I. 2005. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nature Biotechnol. 23, 457–462.CrossRefGoogle Scholar
  28. 28.
    Ikeda Y., Taira K. 2006. Ligand-targeted delivery of therapeutic siRNA. Pharm. Res. 23, 1631–1640.PubMedCrossRefGoogle Scholar
  29. 29.
    Leng Q., Woodle M.C., Lu P.Y., Mixson A.J. 2009. Advances in systemic siRNA delivery. Drugs Future. 34, 721.PubMedGoogle Scholar
  30. 30.
    Landen C.N. Jr., Chavez-Reyes A., Bucana C., Schmandt R., Deavers M.T., Lopez-Berestein G., Sood A.K. 2005. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res. 65, 6910–6918.PubMedCrossRefGoogle Scholar
  31. 31.
    Halder J., Kamat A.A., Landen C.N.Jr., Han L.Y., Lutgendorf S.K., Lin Y.G., Merritt W.M., Jennings N.B., Chavez-Reyes A., Coleman R.L., Gershenson D.M., Schmandt R., Cole S.W., Lopez-Berestein G., Sood A.K. 2006. Focal adhesion kinase targeting using in vivo short interfering RNA delivery in neutral liposomes for ovarian carcinoma therapy. Clin. Cancer Res. 12, 4916–4924.PubMedCrossRefGoogle Scholar
  32. 32.
    Gray M.J., van Buren G., Dallas N.A. Xia L., Wang X., Yang A.D., Somcio R.J., Lin Y.G., Lim S., Fan F., Mangala L.S., Arumugam T., Logsdon C.D., Lopez-Berestein G., Sood A.K., Ellis L.M. 2008. Therapeutic targeting of neuropilin-2 on colorectal carcinoma cells implanted in the murine liver. J. Natl. Cancer Inst. 100, 109–120.PubMedCrossRefGoogle Scholar
  33. 33.
    Merritt W.M., Lin Y.G., Spannuth W.A., Fletcher M.S., Kamat A.A., Han L.Y., Landen C.N., Jennings N., de Geest K., Langley R.R., Villares G., Sanguino A., Lutgendorf S.K., Lopez-Berestein G., Bar-Eli M.M., Sood A.K. 2008. Effect of interleukin-8 gene silencing with liposome-encapsulated small interfering RNA on ovarian cancer cell growth. J. Natl. Cancer Inst. 100, 359–372.PubMedCrossRefGoogle Scholar
  34. 34.
    Ozpolat B., Akar U., Tekedereli I., Lopez-Berestein G. 2008. Targeted silencing of Bcl-2 by liposomal siRNA-nanovectors leads to autophagic and apoptotic cell death in in vivo breast cancer models. Proc. Am. Assoc. Cancer Res. 4928.Google Scholar
  35. 35.
    Gewirtz A.M. 2007. On future’s doorstep: RNA interference and the pharmacopeia of tomorrow. J. Clin. Invest. 117, 3612–3614.PubMedCrossRefGoogle Scholar
  36. 36.
    Zimmermann T.S., Lee A.C., Akinc A., Bramlage B., Bumcrot D., Fedoruk M.N., Harborth J., Heyes J.A., Jeffs L.B., John M., Judge A.D., Lam K., McClintock K., Nechev L.V., Palmer L.R., Racie T., Röhl I., Seiffert S., Shanmugam S., Sood V., Soutschek J., Toudjarska I., Wheat A.J., Yaworski E., Zedalis W., Koteliansky V., Manoharan M., Vornlocher H.P., MacLachlan I. 2006. RNAi-mediated gene silencing in non-human primates. Nature. 441, 111–114PubMedCrossRefGoogle Scholar
  37. 37.
    Gabizon A.A., Shmeeda H., Zalipsky S. 2006. Pros and cons of the liposome platform in cancer drug targeting. J. Liposome Res. 16, 175–183.PubMedCrossRefGoogle Scholar
  38. 38.
    Sharpe M., Easthope S.E., Keating G.M., Lamb H.M. 2002. Polyethylene glycol-liposomal doxorubicin: A review of its use in the management of solid and haematological malignancies and AIDS-related Kaposi’s sarcoma. Drugs. 62, 2089–2126.PubMedCrossRefGoogle Scholar
  39. 39.
    Ishida T., Wang X., Shimizu T., Nawata K., Kiwada H. 2007. PEGylated liposomes elicit an anti-PEG IgM response in a T cell-independent manner. J. Control. Release. 122, 349–355.PubMedCrossRefGoogle Scholar
  40. 40.
    Semple S.C., Harasym T.O., Clow K.A., Ansell S.M., Klimuk S.K., Hope M.J. 2005. Immunogenicity and rapid blood clearance of liposomes containing polyethylene glycol-lipid conjugates and nucleic acid. J. Pharmacol. Exp. Ther. 312, 1020–1026.PubMedCrossRefGoogle Scholar
  41. 41.
    Judge A.D., Bola G., Lee A.C., MacLachlan I. 2006. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol. Ther. 13, 494–505.PubMedCrossRefGoogle Scholar
  42. 42.
    Morrissey D. V., Lockridge J. A., Shaw L., Blanchard K., Jensen K., Breen W., Hartsough K., Machemer L., Radka S., Jadhav V., Vaish N., Zinnen S., Vargeese C., Bowman K., Shašer C. S., Ješs L. B., Judge A., MacLachlan I., Polisky B. 2005. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nature Biotechnol. 23, 1002–1007.CrossRefGoogle Scholar
  43. 43.
    Jeffs L.B., Palmer L.R., Ambegia E.G., Giesbrecht C., Ewanick S., MacLachlan I. 2005. A scalable, extrusion-free method for efficient liposomal encapsulation of plasmid DNA. Pharm. Res. 22, 362–372.PubMedCrossRefGoogle Scholar
  44. 44.
    Rozema D.B., Lewis D.L., Wakefield D.H., Wong S.C., Klein J.J., Roesch P.L., Bertin S.L., Reppen T.W., Chu Q., Blokhin A.V., Hagstrom J.E., Wolff J.A. 2007. Dynamic Polyconjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc. Natl. Acad. Sci. U. S. A. 104, 12982–1287.PubMedCrossRefGoogle Scholar
  45. 45.
    Peer D., Park E.J., Morishita Y., Carman C.V., Shimaoka M. 2008. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science. 319, 627–630.PubMedCrossRefGoogle Scholar
  46. 46.
    Yagi N., Manabe I., Tottori T., Ishihara A., Ogata F., Kim J.H., Nishimura S., Fujiu K., Oishi Y., Itaka K., Kato Y., Yamauchi M., Nagai R. 2009. A nanoparticle system specifically designed to deliver short interfering RNA inhibits tumor growth in vivo. Cancer Res. 69, 6531–6538.PubMedCrossRefGoogle Scholar
  47. 47.
    Alvarez-Erviti L., Seow Y., Yin H., Betts C., Lakhal S., Wood M.J. 2011. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotechnol. 29, 341–345.CrossRefGoogle Scholar
  48. 48.
    Midoux P., Pichon C., Yaouanc J.J., Jaffrès P.A. 2009. Chemical vectors for gene delivery: A current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br. J. Pharmacol. 157, 166–178.PubMedCrossRefGoogle Scholar
  49. 49.
    Ashihara E., Kawata E., Maekawa T. 2010. Future prospect of RNA interference for cancer therapies. Curr. Drug Targets. 11, 345–360.PubMedCrossRefGoogle Scholar
  50. 50.
    Ochiya T., Nagahara S., Sano A., Itoh H., Terada M. 2001. Biomaterials for gene delivery: Atelocollagen-mediated controlled release of molecular medicines. Curr. Gene Ther. 1, 31–52.PubMedCrossRefGoogle Scholar
  51. 51.
    Sano A., Maeda M., Nagahara S., Ochiya T., Honma K., Itoh H., Miyata T., Fujioka K. 2003. Atelocollagen for protein and gene delivery. Adv. Drug Deliv. Rev. 55, 1651–1677.PubMedCrossRefGoogle Scholar
  52. 52.
    Takeshita F., Ochiya T. 2006. Therapeutic potential of RNA interference against cancer. Cancer Sci. 97, 689–696.PubMedCrossRefGoogle Scholar
  53. 53.
    Minakuchi Y., Takeshita F., Kosaka N., Sasaki H., Yamamoto Y., Kouno M., Honma K., Nagahara S., Hanai K., Sano A., Kato T., Terada M., Ochiya T. 2004. Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res. 32, e109.PubMedCrossRefGoogle Scholar
  54. 54.
    Takeshita F., Minakuchi Y., Nagahara S., Honma K., Sasaki H., Hirai K., Teratani T., Namatame N., Yamamoto Y., Hanai K., Kato T., Sano A., Ochiya T. 2005. Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc. Natl. Acad. Sci. U. S. A. 102, 12177–12182.PubMedCrossRefGoogle Scholar
  55. 55.
    Takei Y., Kadomatsu K., Yuzawa Y., Matsuo S., Muramatsu T. 2004. A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res. 64, 3365–3370.PubMedCrossRefGoogle Scholar
  56. 56.
    Kawata E., Ashihara E., Kimura S., Takenaka K., Sato K., Tanaka R., Yokota A., Kamitsuji Y., Takeuchi M., Kuroda J., Tanaka F., Yoshikawa T., Maekawa T. 2008. Administration of PLK-1 small interfering RNA with atelocollagen prevents the growth of liver metastases of lung cancer. Mol. Cancer Ther. 7, 2904–2912.PubMedCrossRefGoogle Scholar
  57. 57.
    Chen Y., Liu Y. 2010. Cyclodextrin-based bioactive supramolecular assemblies. Chem. Soc. Rev. 39, 495–505.PubMedCrossRefGoogle Scholar
  58. 58.
    Uekama K., Hirayama F., Irie T. 1998. Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045–2076.PubMedCrossRefGoogle Scholar
  59. 59.
    Hu-Lieskovan S., Heidel J.D., Bartlett D.W., Davis M.E., Triche T.J. 2005. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res. 65, 8984–8992.PubMedCrossRefGoogle Scholar
  60. 60.
    Davis M.E., Pun S.H., Bellocq N.C., Reineke T.M., Popielarski S.R., Mishra S., Heidel J.D. 2004. Self-assembling nucleic acid delivery vehicles via linear, water-soluble, cyclodextrin-containing polymers. Curr. Med. Chem. 11, 179–197.PubMedCrossRefGoogle Scholar
  61. 61.
    Heidel J.D., Yu Z., Liu J.Y., Rele S.M., Liang Y., Zeidan R.K., Kornbrust D.J., Davis M.E. 2007. Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc. Natl. Acad. Sci. U. S. A. 104, 5715–5721.PubMedCrossRefGoogle Scholar
  62. 62.
    Illum L. 2003. Nasal drug delivery: Possibilities, problems and solutions. J. Control. Release. 87, 187–198.PubMedCrossRefGoogle Scholar
  63. 63.
    Howard K.A., Rahbek U.L., Liu X., Damgaard C.K., Glud S.Z., Andersen M.O., Hovgaard M.B., Schmitz A., Nyengaard J.R., Besenbacher F., Kjems J. 2006. RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol. Ther. 14, 476–484.PubMedCrossRefGoogle Scholar
  64. 64.
    Pille J.Y., Li H., Blot E. Bertrand J.R., Pritchard L.L., Opolon P., Maksimenko A., Lu H., Vannier J.P., Soria J., Malvy C., Soria C. 2006. Intravenous delivery of anti-RhoA small interfering RNA loaded in nanoparticles of chitosan in mice: safety and efficacy in xenografted aggressive breast cancer. Hum. Gene Ther. 17, 1019–1026.PubMedCrossRefGoogle Scholar
  65. 65.
    Kumar P., Wu H., McBride J.L., Junq K.E., Kim M.H., Davidson B.L., Lee S.K., Shankar P., Manjunath N. 2007. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 448, 39–43.PubMedCrossRefGoogle Scholar
  66. 66.
    Song E., Zhu P., Lee S.K., Chowdhury D., Kussman S., Dykxhoorn D.M., Feng Y., Palliser D., Weiner D.B., Shankar P., Marasco W.A., Lieberman J. 2005. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nature Biotechnol. 23, 709–717.CrossRefGoogle Scholar
  67. 67.
    Peer D., Zhu P., Carman C.V., Lieberman J., Shimaoka M. 2007. Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc. Natl. Acad. Sci. U. S. A. 104, 4095–4100.PubMedCrossRefGoogle Scholar
  68. 68.
    Urban-Klein B., Werth S., Abuharbeid S., Czubayko F., Aigner A. 2005. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 12, 461–466.PubMedCrossRefGoogle Scholar
  69. 69.
    Thomas M., Lu J.J., Ge Q., Zhang C., Chen J., Klibanov A.M. 2005. Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc. Natl. Acad. Sci. U. S. A. 102, 5679–5684.PubMedCrossRefGoogle Scholar
  70. 70.
    Read M.L., Singh S., Ahmed Z., Stevenson M., Briggs S.S., Oupicky D., Barrett L.B., Spice R., Kendall M., Berry M., Preece J.A., Logan A., Seymour L.W. 2005. A versatile reducible polycation-based system for efficient delivery of a broad range of nucleic acids. Nucleic Acids Res. 33, e86.PubMedCrossRefGoogle Scholar
  71. 71.
    Fischer D., Bieber T., Li Y., Elsasser H.P., Kissel T. 1999. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm. Res. 16, 1273–1279.PubMedCrossRefGoogle Scholar
  72. 72.
    Marschall P., Malik N., Larin Z. 1999. Transfer of YACs up to 2.3 Mb intact into human cells with polyethylenimine. Gene Ther. 6, 1634–1637.Google Scholar
  73. 73.
    Godbey W.T., Barry M.A., Saggau P., Wu K.K., Mikos A.G. 2000. Poly(ethylenimine)-mediated transfection: A new paradigm for gene delivery. J. Biomed. Mater. Res. 51, 321–328.PubMedCrossRefGoogle Scholar
  74. 74.
    Harpe A.V., Petersen H., Li Y., Kissel T. 2000. Characterization of commercially available and synthesized polyethylenimines for gene delivery. J. Control. Release. 69, 309–322.CrossRefGoogle Scholar
  75. 75.
    Kunath K., Harpe A.V., Fischer D., Petersen H., Bickel U., Voigt K., Kissel T. 2003. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: Comparison of physicochemical properties, transfection efficiency, and in vivo distribution with high-molecular-weight polyethylenimine. J. Control. Release. 89, 113–125.PubMedCrossRefGoogle Scholar
  76. 76.
    Zintchenko A., Philipp A., Dehshahri A., Wagner E. 2008. Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjug. Chem. 19, 1448–1455.PubMedCrossRefGoogle Scholar
  77. 77.
    Han S., Mahato R.I., Kim S.W. 2001. Water-soluble lipopolymer for gene delivery. Bioconjug. Chem. 12, 337–345.CrossRefGoogle Scholar
  78. 78.
    Kim D.H., Rossi J.J. 2007. Strategies for silencing human disease using RNA interference. Nature Rev. Genet. 8, 173–184.PubMedCrossRefGoogle Scholar
  79. 79.
    Jeong J.H., Christensen L.V., Yockman J.W., Zhong Z., Engbersen J.F., Kim W.J., Feijen J., Kim S.W. 2007. Reducible poly(amido ethylenimine) directed to enhance RNA interference. Biomaterials. 28, 1912–1917.CrossRefGoogle Scholar
  80. 80.
    Breunig M., Hozsa C., Lungwitz C.U., Watanabe K., Umeda I., Kato H., Goepferich A. 2008. Mechanistic investigation of poly(ethylene imine)-based siRNA delivery: Disulfide bonds boost intracellular release of the cargo. J. Control. Release. 130, 57–63.PubMedCrossRefGoogle Scholar
  81. 81.
    Schiffelers R.M., Ansari A., Xu J., Zhou Q., Tang Q., Storm G., Molema G., Lu P.Y., Scaria P.V., Woodle M.C. 2004. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 32, e149.PubMedCrossRefGoogle Scholar
  82. 82.
    Kim S.H., Jeong J.H., Lee S.H., Kim S.W., Park T.G. 2008. Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. J. Control. Release. 129, 107–16.PubMedCrossRefGoogle Scholar
  83. 83.
    Leng Q., Woodle M.C., Lu P.Y., Mixson A.J. 2009. Advances in systemic siRNA delivery. Drugs Future. 34, 721.PubMedGoogle Scholar
  84. 84.
    Perales J.C., Ferkol T., Beegen H., Ratnoff O.D., Hanson R.W. 1994. Gene transfer in vivo: Sustained expression and regulation of genes introduced into the liver by receptor-targeted uptake. Proc. Natl. Acad. Sci. U. S. A. 91, 4086–4090.PubMedCrossRefGoogle Scholar
  85. 85.
    Ferkol T., Perales J.C., Mularo F., Hanson R.W. 1996. Receptor-mediated gene transfer into macrophages. Proc. Natl. Acad. Sci. U. S. A. 93, 101–105.PubMedCrossRefGoogle Scholar
  86. 86.
    Stevenson M., Ramos-Perez V., Singh S., Soliman M., Preece J.A., Briggs S.S, Read M.L., Seymour L.W. 2008. Delivery of siRNA mediated by histidine-containing reducible polycations. J. Control. Release. 130, 46–56.PubMedCrossRefGoogle Scholar
  87. 87.
    Midoux P., Pichon C., Yaouanc J.J., Jaffrès P.A. 2009. Chemical vectors for gene delivery: A current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br. J. Pharmacol. 157, 166–78.PubMedCrossRefGoogle Scholar
  88. 88.
    Midoux P., Monsigny M. 1999. Efficient gene transfer by histidylated polylysine/pDNA complexes. Bioconjug. Chem. 10, 406–411.PubMedCrossRefGoogle Scholar
  89. 89.
    Chen Q.R., Zhang L., Stass S.A., Mixson A.J. 2001. Branched co-polymers of histidine and lysine are efficient carriers of plasmids. Nucleic Acids Res. 29, 1334–1340.PubMedCrossRefGoogle Scholar
  90. 90.
    Stevenson M., Ramos-Perez V., Singh S., Soliman M., Preece J.A., Briggs S.S., Read M.L., Seymour L.W. 2008. Delivery of siRNA mediated by histidine-containing reducible polycations. J. Control. Release. 130, 46–56.PubMedCrossRefGoogle Scholar
  91. 91.
    Meyer M., Dohmen C., Philipp A., Kiener D., Maiwald G., Scheu C., Ogris M., Wagner E. 2009. Synthesis and biological evaluation of a bioresponsive and endosomolytic siRNA-polymer conjugate. Mol. Pharm. 6, 752–762.PubMedCrossRefGoogle Scholar
  92. 92.
    Leng Q., Scaria P., Zhu J., Ambulos N., Campbell P., Mixson A.J. 2005. Highly branched HK peptides are effective carriers of siRNA. J. Gene Med. 7, 977–986.PubMedCrossRefGoogle Scholar
  93. 93.
    Leng Q., Scaria P., Lu P., Woodle M.C., Mixson A.J. 2008. Systemic delivery of HK Raf-1 siRNA polyplexes inhibits MDA-MB-435 xenografts. Cancer Gene Ther. 15, 485–495.PubMedCrossRefGoogle Scholar
  94. 94.
    Yan Z., Zou H., Tian F., Grandis J.R., Mixson A.J., Lu P.Y., Li L.Y. 2008. Human rhomboid family-1 gene silencing causes apoptosis or autophagy to epithelial cancer cells and inhibits xenograft tumor growth. Mol. Cancer Ther. 7, 1355–1364.PubMedCrossRefGoogle Scholar
  95. 95.
    Sun C., Lee J.S., Zhang M. 2008. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev. 60, 1252–1265.PubMedCrossRefGoogle Scholar
  96. 96.
    Lee J.H., Lee K., Moon S.H., Lee Y., Park T.G., Cheon J. 2009. All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew. Chem. Int. Ed. Engl. 48, 4174–4179.PubMedCrossRefGoogle Scholar
  97. 97.
    Radu D.R., Lai C.Y., Jeftinija K., Rowe E.W., Jeftinija S., Lin V.S. 2004. A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J. Am. Chem. Soc. 126, 13216–13217.PubMedCrossRefGoogle Scholar
  98. 98.
    Yang J., Lee J., Kang J., Lee K., Suh J.S., Yoon H.G., Huh Y.M., Haam S. 2008. Hollow silica nanocontainers as drug delivery vehicles. Langmuir. 24, 3417–3421.PubMedCrossRefGoogle Scholar
  99. 99.
    Xia T., Kovochich M., Liong M., Meng H., Kabehie S., George S., Zink J.I., Nel A.E. 2009. Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano. 3, 3273–3286.PubMedCrossRefGoogle Scholar
  100. 100.
    Zhang Z., Yang X., Zhang Y., Zeng B., Wang S., Zhu T., Roden R.B., Chen Y., Yang R. 2006. Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clin. Cancer Res. 12, 4933–4939.PubMedCrossRefGoogle Scholar
  101. 101.
    Yang R., Yang X., Zhang Z., Zhang Y., Wang S., Cai Z., Jia Y., Ma Y., Zheng C., Lu Y., Roden R., Chen Y. 2007. Retraction: Single-walled carbon nanotubes-mediated in vivo and in vitro delivery of siRNA into antigen-presenting cells. Gene Ther. 14, 920.PubMedCrossRefGoogle Scholar
  102. 102.
    Podesta J.E., Al-Jamal K.T., Herrero M.A., Tian B., Ali-Boucetta H., Hegde V., Bianco A., Prato M., Kostarelos K. 2009. Antitumor activity and prolonged survival by carbon-nanotube-mediated therapeutic siRNA silencing in a human lung xenograft model. Small. 5, 1176–1185.PubMedCrossRefGoogle Scholar
  103. 103.
    Bonoiu A.C., Mahajan S.D., Ding H., Roy I., Yong K.T., Kumar R., Hu R., Bergey E.J., Schwartz S.A., Prasad P.N. 2009. Nanotechnology approach for drug addiction therapy: gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons. Proc. Natl. Acad. Sci. U. S. A. 106, 5546–5550.PubMedCrossRefGoogle Scholar
  104. 104.
    Manoharan M. 2004. RNA interference and chemically modified small interfering RNAs. Curr. Opin. Chem. Biol. 8, 570–579.PubMedCrossRefGoogle Scholar
  105. 105.
    Chiu Y.L., Ali A., Chu C.Y., Cao H., Rana T.M. 2004. Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem. Biol. 11, 1165–1175.PubMedCrossRefGoogle Scholar
  106. 106.
    Kumar R., Conklin D.S., Mittal V. 2003. High-throughput selection of effective RNAi probes for gene silencing. Genome Res. 13, 2333–2340.PubMedCrossRefGoogle Scholar
  107. 107.
    Wu X., Liu H., Liu J., Haley K.N., Treadway J.A., Larson J.P., Ge N., Peale F., Bruchez M.P. 2003. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnol. 21, 41–46.CrossRefGoogle Scholar
  108. 108.
    Dahan M., Levi S., Luccardini C., Rostaing P., Riveau B., Triller A. 2003. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science. 302, 442–445.PubMedCrossRefGoogle Scholar
  109. 109.
    Tsien R.Y. 1998. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544.PubMedCrossRefGoogle Scholar
  110. 110.
    Chen A.A., Derfus A.M., Khetani S.R., Bhatia S.N. 2005. Quantum dots to monitor RNAi delivery and improve gene silencing. Nucleic Acids Res. 33, e190.PubMedCrossRefGoogle Scholar
  111. 111.
    Medarova Z., Pham W., Farrar C., Petkova V., Moore A. 2007. In vivo imaging of siRNA delivery and silencing in tumors. Nature Med. 13, 372–377.PubMedCrossRefGoogle Scholar
  112. 112.
    Marakhonov A.V., Serzhanova V.A., Skoblov M.Yu., Baranova A.V. 2010. Development of a system for testing siRNA vehicles. Med. Genet. 9, 12–15.Google Scholar
  113. 113.
    Marakhonov A.V., Baranova A.V., Skoblov M.Yu. 2008. RNA interference: Findamental and applied aspects. Med. Genet. 7, 44–56.Google Scholar
  114. 114.
    Skoblov M.Yu. 2009. Prospects of antisence therapy technologies. Mol. Biol. (Moscow). 43, 917–929.CrossRefGoogle Scholar
  115. 115.
    Wang Y., Li Z., Han Y., Liang L.H., Ji A. 2010. Nanoparticle-based delivery system for application of siRNA in vivo. Curr. Drug Metab. 11, 182–196.PubMedCrossRefGoogle Scholar
  116. 116.
    U.S. National Library of Medicine. A service of the U.S. National Institute of Health: Accessed Janurary 10, 2010.

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • K. V. Glebova
    • 1
  • A. V. Marakhonov
    • 1
  • A. V. Baranova
    • 1
    • 2
  • M. Yu. Skoblov
    • 1
  1. 1.Research Center for Medical GeneticsRussian Academy of Medical SciencesMoscowRussia
  2. 2.School of Systems BiologyGeorge Mason UniversityFairfaxUSA

Personalised recommendations