Skip to main content
Log in

Therapeutic siRNAs and nonviral systems for their delivery

  • Molecular Biomedicine Special Issue
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Gene-directed therapy with small interfering RNA (siRNA) has a tremendous potential and will undoubtedly occupy one of the leading positions among other therapeutic methods in the future. The lack of efficient and targeted delivery vectors delays a successful implementation of this method in medicine. To develop such systems, one needs a comprehensive insight into the interactions of siRNAs, its delivery systems, and an organism. The review covers the properties of therapeutic siRNAs and nonviral systems for their delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

apoB:

apolipoprotein B

ASON:

antisense oligonucleotide

AFP:

ga-fetoprotein

HA:

hyaluronic acid

PEG:

polyethylene glycol

RES:

reticuloendothelial system

EPR effect:

enhanced permeability and retention effect

EGF:

epidermal growth factor

CPP:

cell-penetrating peptide

FDA:

Food and Drug Administration

LNA:

locked nucleotide acid

RISC:

RNA-induced silencing complex

siRNA:

small interfering RNA

VEGFR:

vascular endothelial growth factor receptor

References

  1. Areas of Interest for RNA Therapeutics. http://www.siRNA.com/partnering-opportunities/interest.html.

  2. Kim E.J., Shim G., Kim K., Kwon I.C., Oh Y.K., Shim C.K. 2009. Hyaluronic acid complexed to biodegradable poly L-arginine for targeted delivery of siRNAs. J. Gene Med. 11, 791–803.

    PubMed  CAS  Google Scholar 

  3. Braasch D.A., Paroo Z., Constantinescu A., Ren G., Oz O.K., Mason R.P., Corey D.R. 2004. Biodistribution of phosphodiester and phosphorothioate siRNA. Bioorg. Med. Chem. Lett. 14, 1139–1143.

    PubMed  CAS  Google Scholar 

  4. Hall A.H., Wan J., Shaughnessy E.E., Ramsay Sh.B., Alexander K.A. 2004. RNA interference using boranophosphate siRNAs: Structure-activity relationships. Nucleic Acids Res. 32, 5991–6000.

    PubMed  CAS  Google Scholar 

  5. Chiu Y.L., Rana T.M. 2003. siRNA function in RNAi: A chemical modification analysis. RNA. 9, 1034–1048.

    PubMed  CAS  Google Scholar 

  6. Layzer J.M., McCaffrey A.P., Tanner A.K., Huang Z., Kay M.A., Sullenger B.A. 2004. In vivo activity of nuclease-resistant siRNAs. RNA. 10, 766–771.

    PubMed  CAS  Google Scholar 

  7. Soutschek J., Akinc A., Bramlage B., Charisse K., Constien R., Donoghue M., Elbashir S., Geick A., Hadwiger P., Harborth J., John M., Kesavan V., Lavine G., Pandey R.K., Racie T., Rajeev K.G., Röhl I., Toudjarska I., Wang G., Wuschko S., Bumcrot D., Koteliansky V., Limmer S., Manoharan M., Vornlocher H.P. 2004. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 432, 173–178.

    PubMed  CAS  Google Scholar 

  8. de Paula D., Bentley M.V., Mahato R.I. 2007. Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting. RNA. 13, 431–456.

    PubMed  Google Scholar 

  9. Behlke M.A. 2008. Chemical modification of siRNAs for in vivo use. Oligonucleotides. 18, 305–319.

    PubMed  CAS  Google Scholar 

  10. Ikeda Y., Taira K. 2006. Ligand-targeted delivery of therapeutic siRNA. Pharm. Res. 23, 1631–1640.

    PubMed  CAS  Google Scholar 

  11. Bumcrot D., Manoharan M., Koteliansky V., Sah D.W. 2006. RNAi therapeutics: A potential new class of pharmaceutical drugs. Nature Chem. Biol. 2, 711–719.

    CAS  Google Scholar 

  12. Amarzguioui M., Holen T., Babaie E., Prydz H. 2003. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res. 31, 589–595.

    PubMed  CAS  Google Scholar 

  13. Shaw B.R., Moussa L., Sharaf M., Cheek M., Dobrikov M. Boranophosphate siRNA-aptamer chimeras for tumor-specific downregulation of cancer receptors and modulators. 2008. Nucleic Acids Symp. Ser. (Oxford). 52, 655–656.

  14. Czauderna F., Fechtner M., Dames S., Aygun H., Klippel A., Pronk G.J., Giese K., Kaufmann J. 2003. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 31, 2705–2716.

    PubMed  CAS  Google Scholar 

  15. Prakash T.P., Allerson C.R., Dande P., Vickers T.A., Sioufi N., Jarres R., Baher B.F., Swayze E.E., Griffey R.H., Bhar B. 2005. Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J. Med. Chem. 48, 4247–4253.

    PubMed  CAS  Google Scholar 

  16. Judge A.D., Bola G., Lee A.C., MacLachlan I. 2006. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol. Ther. 13, 494–505.

    PubMed  CAS  Google Scholar 

  17. Elmen J., Thonberg H., Ljungberg K., Frieden M., Westergaard M., Xu Y., Wahren B., Liang Z., Orum H., Koch T., Wahlestedt C. 2005. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res. 33, 439–447.

    PubMed  CAS  Google Scholar 

  18. Laursen M.M., Pakula M.B., Gao S., Fluiter K., Mook O.R., Baas F., Langklaer N., Wengel S.L., Wengel J., Kjems J., Bramsen J.B. 2010. Utilization of unlocked nucleic acid (UNA) to enhance siRNA performance in vitro and in vivo. Mol. Biosyst. 6, 862–870.

    PubMed  CAS  Google Scholar 

  19. Obika S., Nanbu D., Hari Y., Andoh J., Morio K., Doi T., Imanishi T. 1998. Stability and structural features of the duplexes containing nucleoside analogues with a fixed N-type conformation, 2′-O,4′-C-methyleneribonucleosides. Tetrahedron Lett. 39, 5401–5404.

    CAS  Google Scholar 

  20. Koshkin A.A., Singh S.K., Nielsen P., Rajwanshi V.K., Kumar R., Meldgaard M., Olsen C.E., Wengel J. 1998. LNA (Locked Nucleic Acids): Synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine, and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron. 54, 3607–3630.

    CAS  Google Scholar 

  21. Singh S.K., Nielsen P., Koshkin A.A., Wengel J. 1998. LNA (locked nucleic acids): Synthesis and high-affinity nucleic acid recognition. J. Chem. Commun. 4, 455–456.

    Google Scholar 

  22. Fluiter K., Mook O.R., Baas F. 2009. The therapeutic potential of LNA-modified siRNAs: Reduction of off-target effects by chemical modification of the siRNA sequence. Methods Mol. Biol. 487, 189–203.

    PubMed  CAS  Google Scholar 

  23. Mook O.R., Baas F., de Wissel M.B., Fluiter K. 2007. Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo. Mol. Cancer Ther. 6, 833–843.

    PubMed  CAS  Google Scholar 

  24. UsiRNA Technology. http://www.marinabio.com/usinra-technology.

  25. Moschos S.A, Jones S.W., Perry M.M., Williams A.E., Erjefalt J.S., Turner J.J., Barnes P.J., Sproat B.S., Gait M.J., Lindsay M.A. 2007. Lung delivery studies using siRNA conjugated to TAT(48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug. Chem. 18, 1450–1459.

    PubMed  CAS  Google Scholar 

  26. Muratovska A., Eccles M.R. 2004. Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett. 558, 63–68.

    PubMed  CAS  Google Scholar 

  27. Futaki S. 2002. Arginine-rich peptides: Potential for intracellular delivery of macromolecules and the mystery of the translocation mechanisms. Int. J. Pharm. 245, 1–7.

    PubMed  CAS  Google Scholar 

  28. Futaki S., Suzuki T., Ohashi W., Yagami T., Tanaka S., Ueda K., Sugiura Y. 2001. Arginine-rich peptides: An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem. 276, 5836–5840.

    PubMed  CAS  Google Scholar 

  29. Melikov K., Chernomordik L.V. 2005. Arginine-rich cell penetrating peptides: From endosomal uptake to nuclear delivery. Cell. Mol. Life Sci. 62, 2739–2749.

    PubMed  CAS  Google Scholar 

  30. Derossi D., Calvet S., Trembleau A., Brunissen A., Chassaing G., Prochiantz A. 1996. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J. Biol. Chem. 271, 18188–18193.

    PubMed  CAS  Google Scholar 

  31. Pooga M., Hallbrink M., Zorko M., Langel U. 1998. Cell penetration by transportan. FASEB J. 12, 67–77.

    PubMed  CAS  Google Scholar 

  32. Cohen J.L., Almutairi A., Cohen J.A., Bernstein M., Brody S.L., Schuster D.P., Fréchet J.M. 2008. Enhanced cell penetration of acid-degradable particles functionalized with cell-penetrating peptides. Bioconjug. Chem. 19, 876–881.

    PubMed  CAS  Google Scholar 

  33. Deshayes S., Morris M.C., Divita G., Heitz F. 2005. Cell-penetrating peptides: Tools for intracellular delivery of therapeutics. Cell. Mol. Life Sci. 62, 1839–1849.

    PubMed  CAS  Google Scholar 

  34. Futaki S., Ohashi W., Suzuki T., Niwa M., Tanaka S., Ueda K., Harashima H., Sugiura Y. 2001. Stearylated arginine-rich peptides: A new class of transfection systems. Bioconjug. Chem. 12, 1005–1011.

    PubMed  CAS  Google Scholar 

  35. Console S., Marty C., Garcia-Echeverria C., Schwendener R., Ballmer-Hofer K. 2003. Antennapedia and HIV transactivator of transcription (TAT) “protein transduction domains” promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans. J. Biol. Chem. 278, 35109–35114.

    PubMed  CAS  Google Scholar 

  36. Zhang W., Smith S.O. 2005. Mechanism of penetration of Antp(43-58) into membrane bilayers. Biochemistry. 44, 10110–10118.

    PubMed  CAS  Google Scholar 

  37. Futaki S., Nakase I., Tadokoro A., Takeuchi T., Jones A.T. 2007. Arginine-rich peptides and their internalization mechanisms. Biochem. Soc. Trans. 35, 784–787.

    PubMed  CAS  Google Scholar 

  38. Nakase I., Niwa M., Takeuchi T., Sonomura K., Kawabata N., Koike Y., Takehashi M., Tanaka S., Ueda K., Simpson J.C., Jones A.T., Sugiura Y., Futaki S. 2004. Cellular uptake of arginine-rich peptides: Roles for macropinocytosis and actin rearrangement. Mol. Ther. 10, 1011–1022.

    PubMed  CAS  Google Scholar 

  39. Nakase I., Tadokoro A., Kawabata N., Takeuchi T., Katoh H., Hiramoto K., Negishi M., Nomizu M., Sugiura Y., Futaki S. 2007. Interaction of argininerich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis. Biochemistry. 46, 492–501.

    PubMed  CAS  Google Scholar 

  40. Tokatlian T., Segura T. 2010. siRNA applications in nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 305–315.

    PubMed  CAS  Google Scholar 

  41. Eguchi A., Meade B.R., Chang Y.C., Fredrickson C.T., Willert K., Puri N., Dowdy S.F. 2009. Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein. Nature Biotechnol. 27, 567–571.

    CAS  Google Scholar 

  42. Kim W.J., Christensen L.V., Jo S., Yockman J.W., Jeong J.H., Kim Y.H., Kim S.W. 2006. Cholesteryl oligoarginine delivering vascular endothelial growth factor siRNA effectively inhibits tumor growth in colon adenocarcinoma. Mol. Ther. 14, 343–350.

    PubMed  Google Scholar 

  43. Kumar L.D., Clarke A.R. 2007. Gene manipulation through the use of small interfering RNA (siRNA): From in vitro to in vivo applications. Adv. Drug Deliv. Rev. 59, 87–100.

    PubMed  CAS  Google Scholar 

  44. Oishi M., Nagasaki Y., Itaka K., Nishiyama N., Kataoka K. 2005. Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile beta-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J. Am. Chem. Soc. 127, 1624–1625.

    PubMed  CAS  Google Scholar 

  45. Rozema D.B., Lewis D.L., Wakefield D.H., Wong S.C., Klein J.J., Roesch P.L., Bertin S.L., Reppen T.W., Chu Q., Blokhin A.V., Hagstrom J.E., Wolff J.A. 2007. Dynamic Polyconjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc. Natl. Acad. Sci. U. S. A. 104, 12982–12987.

    PubMed  CAS  Google Scholar 

  46. Wolfrum C., Shi S., Jayaprakash K.N., Jayaraman M., Wang G., Pandey R.K., Rajeev K.G., Nakayama T., Charrise K., Ndungo E.M., Zimmermann T., Koteliansky V., Manoharan M., Stoffel M. 2007. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nature Biotechnol. 25, 1149–1157.

    CAS  Google Scholar 

  47. Nishina K., Unno T., Uno Y., Kubodera T., Kanouchi T., Miz U. S. Awa H., Yokota T. 2008. Efficient in vivo delivery of siRNA to the liver by conjugation of alpha-tocopherol. Mol. Ther. 16, 734–740.

    PubMed  CAS  Google Scholar 

  48. Dharmacon RNAi Technologies. http://www.dharmacon.com/PopUpTemplate.aspx?id=1033

  49. Check Hayen E. 2008. Thousands of proteins affected by miRNAs. Nature. 454, 562.

    Google Scholar 

  50. Hung C.F., Lu K.C., Cheng T.L., Wu R.H., Huang L.Y., Teng C.F., Chanq W.T. 2006. A novel siRNA validation system for functional screening and identification of effective RNAi probes in mammalian cells. Biochem. Biophys. Res. Commun. 346, 707–720.

    PubMed  CAS  Google Scholar 

  51. Alsheddi T., Vasin L., Meduri R., Randhawa M., Glazko G., Baranova A. 2008. siRNAs with high specificity to the target: A systematic design by CRM algorithm. Mol. Biol. (Moscow). 42, 163–171.

    CAS  Google Scholar 

  52. Tilesi F., Fradiani P., Socci V., Willems D., Ascenzioni F. 2009. Design and validation of siRNAs and shRNAs. Curr. Opin. Mol. Ther. 11, 156–164.

    PubMed  CAS  Google Scholar 

  53. Baranova A., Bode J., Manyam G., Emelianenko M. 2011. An efficient algorithm for systematic analysis of nucleotide strings suitable for siRNA design. BMC Res. Notes. 27, 168.

    Google Scholar 

  54. Birmingham A., Anderson E.M., Reynolds A., Ilsley-Tyree D., Leake D., Fedorov Y., Baskerville S., Maksimova E., Robinson K., Karpilow J., Marshall W.S., Khvorova A. 2006. 3’ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nature Methods. 3, 199–204.

    PubMed  CAS  Google Scholar 

  55. Weitzer S., Martinez J. 2007. hClp1: A novel kinase revitalizes RNA metabolism. Cell Cycle. 6, 2133–2137.

    PubMed  CAS  Google Scholar 

  56. Chen P.Y., Weinmann L., Gaidatzis D., Pei Y., Zavolan M., Tuschl T., Meister G. 2008. Strand-specific 5’-O-methylation of siRNA duplexes controls guide strand selection and targeting specificity. RNA. 14, 263–274.

    PubMed  CAS  Google Scholar 

  57. Off-Target Effects: Disturbing the Silence of RNA interference (RNAi). http://www.dharmacon.com/uploadedFiles/Home/Support-Center/Technical-Reviews/off-target-tech-review.pdf.

  58. Kirchhoff F. 2008. Silencing HIV-1 in vivo. Cell. 134, 566–568.

    PubMed  CAS  Google Scholar 

  59. Leng Q., Woodle M.C., Lu P.Y., Mixson A.J. 2009. Advances in systemic siRNA delivery. Drugs Future. 34, 721.

    PubMed  CAS  Google Scholar 

  60. Li W., Szoka Jr.F.C. 2007. Lipid-based nanoparticles for nucleic acid delivery. Pharm. Res. 24, 438–449.

    PubMed  Google Scholar 

  61. Juliano R., Bauman J., Kang H., Ming X. 2009. Biological barriers to therapy with antisense and siRNA oligonucleotides. Mol. Pharm. 6, 686–695.

    PubMed  CAS  Google Scholar 

  62. Scherphof G.L. 1991. In vivo behavior of liposomes: Interactions with the mononuclear phagocyte system and implications for drug targeting. In: Handbook of Experimental Pharmacology. Ed. Juliano R.L. Berlin: Springer, vol. 100, pp. 285–300.

    Google Scholar 

  63. Shim M.S., Kwon Y.J. 2010. Efficient and targeted delivery of siRNA in vivo. FEBS J. 277, 4814–4827.

    PubMed  CAS  Google Scholar 

  64. Jang S.H., Wientjes M.G., Lu D., Au J.L. 2003. Drug delivery and transport to solid tumors. Pharm. Res. 20, 1337–13350.

    PubMed  CAS  Google Scholar 

  65. Cho-Rock J., Yoo J., Jang Y.J., Kim S., Chu I.-S., Yeom Y.I., Choi J.Y., Im D.-S. 2006. Adenovirus-mediated transfer of siRNA against PTTG1 inhibits liver cancer cell growth in vitro and in vivo. Hepatology. 43, 1042–1052.

    Google Scholar 

  66. Juliano R., Alam M.R., Dixit V., Kang H. 2008. Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res. 36, 4158–4171.

    PubMed  CAS  Google Scholar 

  67. Khalil I.A., Kogure K., Akita H., Harashima H. 2006. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol. Rev. 58, 32–45.

    PubMed  CAS  Google Scholar 

  68. Rejman J., Oberle V., Zuhorn I.S., Hoekstra D. 2004. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 377, 159–169.

    PubMed  CAS  Google Scholar 

  69. Spagnou S., Miller A.D., Keller M. 2004. Lipidic carriers of siRNA: Differences in the formulation, cellular uptake, and delivery with plasmid DNA. Biochemistry. 43, 13348–13356.

    PubMed  CAS  Google Scholar 

  70. Tong A.W., Jay C.M., Senzer N., Maples P.B., Nemunaitis J. 2009. Systemic therapeutic gene delivery for cancer: crafting Paris’ arrow. Curr. Gene Ther. 9, 45–60.

    PubMed  CAS  Google Scholar 

  71. Zelphati O., Uyechi L.S., Barron L.G., Szoka Jr.F.C. 1998. Effect of serum components on the physicochemical properties of cationic lipid/oligonucleotide complexes and on their interactions with cells. Biochim. Biophys. Acta. 1390, 119–133.

    PubMed  CAS  Google Scholar 

  72. Li S., Huang L. 1997. In vivo gene transfer via intravenous administration of cationic lipid-protamine-DNA (LPD) complexes. Gene Ther. 4, 891–900.

    PubMed  CAS  Google Scholar 

  73. Liu F., Qi H., Huang L., Liu D. 1997. Factors controlling the efficiency of cationic lipid-mediated transfection in vivo via intravenous administration. Gene Ther. 4, 517–523.

    PubMed  CAS  Google Scholar 

  74. Oja C.D., Semple S.C., Chonn A., Cullis P. 1996. Influence of dose on liposome clearance: Critical role of blood proteins. Biochim. Biophys. Acta. 1281, 31–37.

    PubMed  Google Scholar 

  75. Semple S.C., Chonn A., Cullis P. 1996. Influence of cholesterol on the association of plasma proteins with liposomes. Biochemistry. 35, 2521–2525.

    PubMed  CAS  Google Scholar 

  76. David S., Pitard B., Benoît J.P., Passirani C. 2010. Non-viral nanosystems for systemic siRNA delivery. Pharmacol. Res. 62, 100–114.

    PubMed  CAS  Google Scholar 

  77. Ogris M., Wagner E. 2002. Targeting tumors with nonviral gene delivery systems. Drug Discov. Today. 7, 479–485.

    PubMed  CAS  Google Scholar 

  78. Gref R., Minamitake Y., Peracchia M.T., Trubetskoy V., Torchilin V., Langer R. 1994. Biodegradable long-circulating polymeric nanospheres. Science. 263, 1600–1603.

    PubMed  CAS  Google Scholar 

  79. Veronses F.M., Pasut G. 2005. PEGylation, successful approach to drug delivery. Drug Discovery Today. 10, 1451–1458.

    Google Scholar 

  80. Guo J., Fisher K.A., Darcy R., Cryan J.F., O’Driscoll C. 2010. Therapeutic targeting in the silent era: advances in non-viral siRNA delivery. Mol. Biosys. 6, 1143–1161.

    CAS  Google Scholar 

  81. Ishida T., Kiwada H. 2008. Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int. J. Pharm. 354, 56–62.

    PubMed  CAS  Google Scholar 

  82. Kim E.J., Shim G., Kim K., Kwon I.C., Oh Y.K., Shim C.K. 2009. Hyaluronic acid complexed to biodegradable poly L-arginine for targeted delivery of siRNAs. J. Gene Med. 11, 791–803.

    PubMed  CAS  Google Scholar 

  83. Wang Y., Li Z., Han Y., Liang L.H., Ji A. 2010. Nanoparticle-based delivery system for application of siRNA in vivo. Curr. Drug Metab. 11, 182–196.

    PubMed  CAS  Google Scholar 

  84. Jiang G., Park K., Kim J., Kim K.S., Hahn S.K. 2009. Target-specific intracellular delivery of siRNA/PEIHA complex by receptor mediated endocytosis. Mol. Pharm. 6, 727–737.

    PubMed  CAS  Google Scholar 

  85. de Martimprey H., Vauthier C., Malvy C., Couvreur P. 2009. Polymer nanocarriers for the delivery of small fragments of nucleic acids: Oligonucleotides and siRNA. Eur. J. Pharm. Biopharm. 71, 490–504.

    PubMed  Google Scholar 

  86. Kircheis R., Schuller S., Brunner S., Ogris M., Heider K.H., Zauner W., Wagner E. J. 1999. Polycation-based DNA complexes for tumor-targeted gene delivery in vivo. Gene Med. 1, 111–120.

    CAS  Google Scholar 

  87. Pitard B., Oudrhiri N., Lambert O., Vivien E., Masson C., Wetzer B., Hauchecorne M., Scherman D., Rigaud J.L., Vigneron J.P., Lehn J.M., Lehn P. 2001. Sterically stabilized BGTC-based lipoplexes: Structural features and gene transfection into the mouse airways in vivo. Gene Med. 3, 478–487.

    CAS  Google Scholar 

  88. Pack D.W., Hoffman A.S., Pun S., Stayton P.S. 2005. Design and development of polymers for gene delivery. Nature Rev. Drug Discovery. 4, 581–593.

    CAS  Google Scholar 

  89. Howard K.A., Rahbek U.L., Liu X., Damgaard C.K., Glud S.Z., Andersen M.O., Hovgaard M.B., Schmitz A., Nyengaard J.R., Besenbacher F., Kjems J. 2006. RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol. Ther. 14, 476–484.

    PubMed  CAS  Google Scholar 

  90. Zhang X., Shan P., Jiang D., Noble P.W., Abraham N.G., Kappas A., Lee P.J. 2004. Small interfering RNA targeting heme oxygenase-1 enhances ischemia-reperfusion-induced lung apoptosis. J. Biol. Chem. 279, 10677–10684.

    PubMed  CAS  Google Scholar 

  91. Bitko V., Musiyenko A., Shulyayeva O., Barik S. 2005. Inhibition of respiratory viruses by nasally administered siRNA. Nature Med. 11, 50–55.

    PubMed  CAS  Google Scholar 

  92. de Vry J., Martínez-Martínez P., Losen M., Temel Y., Steckler T., Steinbusch H.W., de Baets M.H., Prickaerts J. 2010. In vivo electroporation of the central nervous system: a non-viral approach for targeted gene delivery. Prog. Neurobiol. 92, 227–44.

    PubMed  Google Scholar 

  93. Makimura H., Mizuno T.M., Mastaitis J.W., Agami R., Mobbs C.V. 2002. Reducing hypothalamic AGRP by RNA interference increases metabolic rate and decreases body weight without influencing food intake. BMC Neurosci. 3, 18.

    PubMed  Google Scholar 

  94. Thakker D.R., Natt F., Hüsken D., Maier R., Müller M., van der Putten H., Hoyer D., Cryan J.F. 2004. Neurochemical and behavioral consequences of widespread gene knockdown in the adult mouse brain by using nonviral RNA interference. Proc. Natl. Acad. Sci. U. S. A. 101, 17270–17275.

    PubMed  CAS  Google Scholar 

  95. Thakker D.R., Hüsken D., van der Putten H., Maier R., Hoyer D., Cryan J.F. 2005. siRNA-mediated knock-down of the serotonin transporter in the adult mouse brain. Mol. Psychiatry. 10, 782–789, 714.

    PubMed  CAS  Google Scholar 

  96. Dorn G., Patel S., Wotherspoon G., Hemmings-Mieszczak M., Barclay J., Natt F.J., Martin P., Bevan, S., Fox A., Ganju P., Wishart W., Hall J. 2004. siRNA relieves chronic neuropathic pain. Nucleic Acids Res. 32, e49.

    PubMed  Google Scholar 

  97. Emerson M.V., Lauer A.K. 2007. Emerging therapies for the treatment of neovascular age-related macular degeneration and diabetic macular edema. BioDrugs. 21, 245–257.

    PubMed  CAS  Google Scholar 

  98. Tompkins S.M., Lo C.Y., Tumpey T.M., Epstein S.L. 2004. Protection against lethal influenza virus challenge by RNA interference in vivo. Proc. Natl. Acad. Sci. U. S. A. 101, 8682–8686.

    PubMed  CAS  Google Scholar 

  99. Chae S.S., Paik J.H., Furneaux H., Hla T. 2004. Requirement for sphingosine 1-phosphate receptor-1 in tumor angiogenesis demonstrated by in vivo RNA interference. J. Clin. Invest. 114, 1082–1089.

    PubMed  CAS  Google Scholar 

  100. Song E., Zhu P., Lee S.K., Chowdhury D., Kussman S., Dykxhoorn D.M., Feng Y., Palliser D., Weiner D.B., Shankar P., Marasco W.A., Lieberman J. 2005. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nature Biotechnol. 23, 709–717.

    CAS  Google Scholar 

  101. Wu S.Y., McMillan N.A. 2009. Lipidic systems for in vivo siRNA delivery. AAPS J. 11, 639–652.

    PubMed  CAS  Google Scholar 

  102. Palliser D., Chowdhury D., Wang Q.Y., Lee S.J., Bronson R.T., Knipe D.M., Lieberman J. 2006. An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature. 439, 89–94.

    PubMed  CAS  Google Scholar 

  103. Azuma M., Ritprajak P., Hashiguchi M. 2010. Topical application of siRNA targeting cutaneous dendritic cells in allergic skin disease. Methods Mol. Biol. 623, 373–381.

    PubMed  CAS  Google Scholar 

  104. Takanashi M., Oikawa K., Sudo K., Tanaka M., Fujita K., Ishikawa A., Nakae S., Kaspar R.L., Matsuzaki M., Kudo M., Kuroda M. 2009. Therapeutic silencing of an endogenous gene by siRNA cream in an arthritis model mouse. Gene Ther. 16, 982–989.

    PubMed  CAS  Google Scholar 

  105. Manjunath N., Dykxhoorn D.M. 2010. Advances in synthetic siRNA delivery. Discov. Med. 9, 418–430.

    PubMed  CAS  Google Scholar 

  106. Pirollo K.F., Rait A., Zhou Q., Hwang S.H., Dagata J.A., Zon G., Hogrefe R.I., Palchik G., Chang E.H. 2007. Materializing the potential of small interfering RNA via a tumor-targeting nanodelivery system. Cancer Res. 67, 2938–2943.

    PubMed  CAS  Google Scholar 

  107. Peer D., Zhu P., Carman C.V., Lieberman J., Shimaoka M. 2007. Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc. Natl. Acad. Sci. U. S. A. 104, 4095–4100.

    PubMed  CAS  Google Scholar 

  108. Sato A., Takagi M., Shimamoto A., Kawakami S., Hashida M. 2007. Small interfering RNA delivery to the liver by intravenous administration of galactosylated cationic liposomes in mice. Biomaterials. 28, 1434–1442.

    PubMed  CAS  Google Scholar 

  109. Hu-Lieskovan S., Heidel J.D., Bartlett D.W., Davis M.E., Triche T.J. 2005. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res. 65, 8984–8992.

    PubMed  CAS  Google Scholar 

  110. Schiffelers R.M., Ansari A., Xu J., Zhou Q., Tang Q., Storm G., Molema G., Lu P.Y., Scaria P.V., Woodle M.C. 2004. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 32, e149.

    PubMed  Google Scholar 

  111. Maeda H. 2001. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41, 189–207.

    PubMed  CAS  Google Scholar 

  112. Greish K. 2010. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol. 624, 25–37.

    PubMed  CAS  Google Scholar 

  113. Zhou J., Rossi J.J. 2010. Aptamer-targeted cell-specific RNA interference. Silence. 1, 4.

    PubMed  Google Scholar 

  114. Gold L., Polisky B., Uhlenbeck O., Yarus M. 1995. Diversity of oligonucleotide functions. Annu. Rev. Biochem. 64, 763–797.

    PubMed  CAS  Google Scholar 

  115. Dassie J.P., Liu X.Y., Thomas G.S., Whitaker R.M., Thiel K.W., Stockdale K.R., Meyerholz D.K., McCaffrey A.P., McNamara J.O., Giangrande P.H. 2009. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nature Biotechnol. 27, 839–849.

    CAS  Google Scholar 

  116. McNamara J.O., Andrechek E.R., Wang Y., Viles K.D., Rempel R.E., Gilboa E., Sullenger B.A., Giangrande P.H. 2006. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nature Biotechnol. 24, 1005–1015.

    CAS  Google Scholar 

  117. Peer D., Park E.J., Morishita Y., Carman C.V., Shimaoka M. 2008. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science. 319, 627–630.

    PubMed  CAS  Google Scholar 

  118. Zhang Y., Zhang Y.F., Bryant J., Charles A., Boado R.J., Pardridge W.M. 2004. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin. Cancer Res. 10, 3667–3677.

    PubMed  CAS  Google Scholar 

  119. Watanabe T., Umehara T., Yasui F., Nakagawa S., Yano J., Ohgi T., Sonoke S., Satoh K., Inoue K., Yoshiba M., Kohara M. 2007. Liver target delivery of small interfering RNA to the HCV gene by lactosylated cationic liposome. J. Hepatol. 47, 744–750.

    PubMed  CAS  Google Scholar 

  120. Chen Y., Sen J., Bathula S.R., Yang Q., Fittipaldi R., Huang L. 2009. Novel cationic lipid that delivers siRNA and enhances therapeutic effect in lung cancer cells. Mol. Pharm. 6, 696–705.

    PubMed  CAS  Google Scholar 

  121. Senior J.H., Trimble K.R., Maskiewicz R. 1991. Interaction of positively-charged liposomes with blood: implications for their application in vivo. Biochim. Biophys. Acta. 1070, 173–179.

    PubMed  CAS  Google Scholar 

  122. Sakurai F., Nishioka T., Saito H., Baba T., Okuda A., Matsumoto O., Taga T., Yamashita F., Takakura Y., Hashida M. 2001. Interaction between DNA-cationic liposome complexes and erythrocytes is an important factor in systemic gene transfer via the intravenous route in mice: the role of the neutral helper lipid. Gene Ther. 8, 677–686.

    PubMed  CAS  Google Scholar 

  123. Oyewumi M.O., Yokel R.A., Jay M., Coakley T., Mumper R.J. 2004. Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice. J. Control Release. 95, 613–626.

    PubMed  CAS  Google Scholar 

  124. Richardson S.C., Kolbe H.V., Duncan R. 1999. Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution, and ability to complex and protect DNA. Int. J. Pharm. 178, 231–243.

    PubMed  CAS  Google Scholar 

  125. Akhtar S., Benter I. 2007. Toxicogenomics of nonviral drug delivery systems for RNAi: potential impact on siRNA-mediated gene silencing activity and specificity. Adv. Drug Deliv. Rev. 59, 164–182.

    PubMed  CAS  Google Scholar 

  126. Hollins A.J., Omidi Y., Benter I.F., Akhtar S. 2007. Toxicogenomics of drug delivery systems: Exploiting delivery system-induced changes in target gene expression to enhance siRNA activity. J. Drug Target. 15, 83–88.

    PubMed  CAS  Google Scholar 

  127. Omidi Y., Hollins A.J., Drayton R.M., Akhtar S. 2005. Polypropylenimine dendrimer-induced gene expression changes: The effect of complexation with DNA, dendrimer generation and cell type. J. Drug Target. 13, 431–443.

    PubMed  CAS  Google Scholar 

  128. Omidi Y., Hollins A.J., Benboubetra M., Drayton R., Benter I.F., Akhtar S. 2003. Toxicogenomics of nonviral vectors for gene therapy: A microarray study of lipofectin- and oligofectamine-induced gene expression changes in human epithelial cells. J. Drug Target. 6, 311–323.

    Google Scholar 

  129. Elbashir S.M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T. 2001. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 411, 494–498.

    PubMed  CAS  Google Scholar 

  130. Hornung V., Guenthner-Biller M., Bourquin C., Ablasser A., Schlee M., Uematsu S., Noronha A., Manoharan M., Akira S., de Fougerolles A., Endres S., Hartmann G. 2005. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nature Med. 11, 263–270.

    PubMed  CAS  Google Scholar 

  131. Sioud M., Sørensen D.R. 2003. Cationic liposome-mediated delivery of siRNAs in adult mice. Biochem. Biophys. Res. Commun. 312, 1220–1225.

    PubMed  CAS  Google Scholar 

  132. Judge A.D., Sood V., Shaw J.R., Fang D., McClintock K., MacLachlan I. 2005. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nature Biotechnol. 23, 457–462.

    CAS  Google Scholar 

  133. Kariko K., Bhuyan P., Capodici J., Weissman D. 2004. Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J. Immunol. 172, 6545–6549.

    PubMed  CAS  Google Scholar 

  134. Marques J.T., Williams B.R.G. 2005. Activation of the mammalian immune system by siRNAs. Nature Biotechnol. 23, 1399–1405.

    CAS  Google Scholar 

  135. Robbins M., Judge A., MacLachlan I. 2009. siRNA and innate immunity. Oligonucleotides. 19, 89–102.

    PubMed  CAS  Google Scholar 

  136. Ma Z., Li J., He F., Wilson A., Pitt B., Li S. 2005. Cationic lipids enhance siRNA-mediated interferon response in mice. Biochem. Biophys. Res. Commun. 330, 755–759.

    PubMed  CAS  Google Scholar 

  137. Ge Q., Filip L., Bai A., Nguyen T., Eisen H.N., Chen J. 2004. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc. Natl. Acad. Sci. U. S. A. 101, 8676–8681.

    PubMed  CAS  Google Scholar 

  138. Soutschek J., Akinc A., Bramlage B., Charisse K., Constien R., Donoghue M., Elbashir S., Geick A., Hadwiger P., Harborth J., John M., Kesavan V., Lavine G., Pandey R.K., Racie T., Rajeev K.G., Röhl I., Toudjarska I., Wang G., Wuschko S., Bumcrot D., Koteliansky V., Limmer S., Manoharan M., Vornlocher H.P. 2004. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 432, 173–178.

    PubMed  CAS  Google Scholar 

  139. Zimmermann T.S., Lee A.C., Akinc A., Bramlage B., Bumcrot D., Fedoruk, M.N., Harborth J., Heyes J.A., Jeffs L.B., John M., Judge A.D., Lam K., McClintock K., Nechev L.V., Palmer L.R., Racie T., Röhl I., Seiffert S., Shanmugam S., Sood V., Soutschek J., Toudjarska I., Wheat A.J., Yaworski E., Zedalis W., Koteliansky V., Manoharan M., Vornlocher H.P., MacLachlan I. 2006. RNAi-mediated gene silencing in non-human primates. Nature. 441, 111–114.

    PubMed  CAS  Google Scholar 

  140. Gantier M.P., Tong S., Behlke M.A., Irving A.T., Lappas M., Nilsson U.W., Latz E., McMillan N.A., Williams B.R. 2010. Rational design of immunostimulatory siRNAs. Mol. Ther. 18, 785–795.

    PubMed  CAS  Google Scholar 

  141. Furset G., Sioud M. 2007. Design of bifunctional siRNAs: Combining immunostimulation and gene-silencing in one single siRNA molecule. Biochem. Biophys. Res. Commun. 352, 642–649.

    PubMed  CAS  Google Scholar 

  142. Poeck H., Besch R., Maihoefer C., Renn M., Tormo D., Morskaya S.S., Kirschnek S., Gaffal E., Landsberg J., Hellmuth J., Schmidt A., Anz D., Bscheider M., Schwerd T., Berking C., Bourquin C., Kalinke U., Kremmer E., Kato H., Akira S., Meyers R., Häcker G., Neuenhahn M., Busch D., Ruland J., Rothenfusser S., Prinz M., Hornung V., Endres S., Tüting T., Hartmann G. 2008. 5′-Triphosphate-siRNA: turning gene silencing and Rig-I activation against melanoma. Nature Med. 14, 1256–1263.

    PubMed  CAS  Google Scholar 

  143. Liu S., Shibata A., Ueno S., Huang Y., Wang Y., Li Y. 2006. Translocation of positively charged copoly(Lys/Tyr) across phospholipid membranes. Biochem. Biophys. Res. Commun. 339, 761–768.

    PubMed  CAS  Google Scholar 

  144. Cedervall T., Lynch I., Lindman S., Berggard T., Thulin E., Nilsson H., Dawson K.A., Linse S. 2007. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 104, 2050–2055.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Skoblov.

Additional information

Original Russian Text © K.V. Glebova, A.V. Marakhonov, A.V. Baranova, M.Yu. Skoblov, 2012, published in Molekulyarnaya Biologiya, 2012, Vol. 46, No. 3, pp. 371–386.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glebova, K.V., Marakhonov, A.V., Baranova, A.V. et al. Therapeutic siRNAs and nonviral systems for their delivery. Mol Biol 46, 335–348 (2012). https://doi.org/10.1134/S0026893312020069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893312020069

Keywords

Navigation