Molecular Biology

, Volume 46, Issue 3, pp 335–348 | Cite as

Therapeutic siRNAs and nonviral systems for their delivery

  • K. V. Glebova
  • A. V. Marakhonov
  • A. V. Baranova
  • M. Yu. Skoblov
Molecular Biomedicine Special Issue


Gene-directed therapy with small interfering RNA (siRNA) has a tremendous potential and will undoubtedly occupy one of the leading positions among other therapeutic methods in the future. The lack of efficient and targeted delivery vectors delays a successful implementation of this method in medicine. To develop such systems, one needs a comprehensive insight into the interactions of siRNAs, its delivery systems, and an organism. The review covers the properties of therapeutic siRNAs and nonviral systems for their delivery.


RNA interference siRNA siRNA delivery 



apolipoprotein B


antisense oligonucleotide




hyaluronic acid


polyethylene glycol


reticuloendothelial system

EPR effect

enhanced permeability and retention effect


epidermal growth factor


cell-penetrating peptide


Food and Drug Administration


locked nucleotide acid


RNA-induced silencing complex


small interfering RNA


vascular endothelial growth factor receptor


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Areas of Interest for RNA Therapeutics.
  2. 2.
    Kim E.J., Shim G., Kim K., Kwon I.C., Oh Y.K., Shim C.K. 2009. Hyaluronic acid complexed to biodegradable poly L-arginine for targeted delivery of siRNAs. J. Gene Med. 11, 791–803.PubMedGoogle Scholar
  3. 3.
    Braasch D.A., Paroo Z., Constantinescu A., Ren G., Oz O.K., Mason R.P., Corey D.R. 2004. Biodistribution of phosphodiester and phosphorothioate siRNA. Bioorg. Med. Chem. Lett. 14, 1139–1143.PubMedGoogle Scholar
  4. 4.
    Hall A.H., Wan J., Shaughnessy E.E., Ramsay Sh.B., Alexander K.A. 2004. RNA interference using boranophosphate siRNAs: Structure-activity relationships. Nucleic Acids Res. 32, 5991–6000.PubMedGoogle Scholar
  5. 5.
    Chiu Y.L., Rana T.M. 2003. siRNA function in RNAi: A chemical modification analysis. RNA. 9, 1034–1048.PubMedGoogle Scholar
  6. 6.
    Layzer J.M., McCaffrey A.P., Tanner A.K., Huang Z., Kay M.A., Sullenger B.A. 2004. In vivo activity of nuclease-resistant siRNAs. RNA. 10, 766–771.PubMedGoogle Scholar
  7. 7.
    Soutschek J., Akinc A., Bramlage B., Charisse K., Constien R., Donoghue M., Elbashir S., Geick A., Hadwiger P., Harborth J., John M., Kesavan V., Lavine G., Pandey R.K., Racie T., Rajeev K.G., Röhl I., Toudjarska I., Wang G., Wuschko S., Bumcrot D., Koteliansky V., Limmer S., Manoharan M., Vornlocher H.P. 2004. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 432, 173–178.PubMedGoogle Scholar
  8. 8.
    de Paula D., Bentley M.V., Mahato R.I. 2007. Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting. RNA. 13, 431–456.PubMedGoogle Scholar
  9. 9.
    Behlke M.A. 2008. Chemical modification of siRNAs for in vivo use. Oligonucleotides. 18, 305–319.PubMedGoogle Scholar
  10. 10.
    Ikeda Y., Taira K. 2006. Ligand-targeted delivery of therapeutic siRNA. Pharm. Res. 23, 1631–1640.PubMedGoogle Scholar
  11. 11.
    Bumcrot D., Manoharan M., Koteliansky V., Sah D.W. 2006. RNAi therapeutics: A potential new class of pharmaceutical drugs. Nature Chem. Biol. 2, 711–719.Google Scholar
  12. 12.
    Amarzguioui M., Holen T., Babaie E., Prydz H. 2003. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res. 31, 589–595.PubMedGoogle Scholar
  13. 13.
    Shaw B.R., Moussa L., Sharaf M., Cheek M., Dobrikov M. Boranophosphate siRNA-aptamer chimeras for tumor-specific downregulation of cancer receptors and modulators. 2008. Nucleic Acids Symp. Ser. (Oxford). 52, 655–656.Google Scholar
  14. 14.
    Czauderna F., Fechtner M., Dames S., Aygun H., Klippel A., Pronk G.J., Giese K., Kaufmann J. 2003. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 31, 2705–2716.PubMedGoogle Scholar
  15. 15.
    Prakash T.P., Allerson C.R., Dande P., Vickers T.A., Sioufi N., Jarres R., Baher B.F., Swayze E.E., Griffey R.H., Bhar B. 2005. Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J. Med. Chem. 48, 4247–4253.PubMedGoogle Scholar
  16. 16.
    Judge A.D., Bola G., Lee A.C., MacLachlan I. 2006. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol. Ther. 13, 494–505.PubMedGoogle Scholar
  17. 17.
    Elmen J., Thonberg H., Ljungberg K., Frieden M., Westergaard M., Xu Y., Wahren B., Liang Z., Orum H., Koch T., Wahlestedt C. 2005. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res. 33, 439–447.PubMedGoogle Scholar
  18. 18.
    Laursen M.M., Pakula M.B., Gao S., Fluiter K., Mook O.R., Baas F., Langklaer N., Wengel S.L., Wengel J., Kjems J., Bramsen J.B. 2010. Utilization of unlocked nucleic acid (UNA) to enhance siRNA performance in vitro and in vivo. Mol. Biosyst. 6, 862–870.PubMedGoogle Scholar
  19. 19.
    Obika S., Nanbu D., Hari Y., Andoh J., Morio K., Doi T., Imanishi T. 1998. Stability and structural features of the duplexes containing nucleoside analogues with a fixed N-type conformation, 2′-O,4′-C-methyleneribonucleosides. Tetrahedron Lett. 39, 5401–5404.Google Scholar
  20. 20.
    Koshkin A.A., Singh S.K., Nielsen P., Rajwanshi V.K., Kumar R., Meldgaard M., Olsen C.E., Wengel J. 1998. LNA (Locked Nucleic Acids): Synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine, and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron. 54, 3607–3630.Google Scholar
  21. 21.
    Singh S.K., Nielsen P., Koshkin A.A., Wengel J. 1998. LNA (locked nucleic acids): Synthesis and high-affinity nucleic acid recognition. J. Chem. Commun. 4, 455–456.Google Scholar
  22. 22.
    Fluiter K., Mook O.R., Baas F. 2009. The therapeutic potential of LNA-modified siRNAs: Reduction of off-target effects by chemical modification of the siRNA sequence. Methods Mol. Biol. 487, 189–203.PubMedGoogle Scholar
  23. 23.
    Mook O.R., Baas F., de Wissel M.B., Fluiter K. 2007. Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo. Mol. Cancer Ther. 6, 833–843.PubMedGoogle Scholar
  24. 24.
  25. 25.
    Moschos S.A, Jones S.W., Perry M.M., Williams A.E., Erjefalt J.S., Turner J.J., Barnes P.J., Sproat B.S., Gait M.J., Lindsay M.A. 2007. Lung delivery studies using siRNA conjugated to TAT(48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug. Chem. 18, 1450–1459.PubMedGoogle Scholar
  26. 26.
    Muratovska A., Eccles M.R. 2004. Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett. 558, 63–68.PubMedGoogle Scholar
  27. 27.
    Futaki S. 2002. Arginine-rich peptides: Potential for intracellular delivery of macromolecules and the mystery of the translocation mechanisms. Int. J. Pharm. 245, 1–7.PubMedGoogle Scholar
  28. 28.
    Futaki S., Suzuki T., Ohashi W., Yagami T., Tanaka S., Ueda K., Sugiura Y. 2001. Arginine-rich peptides: An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem. 276, 5836–5840.PubMedGoogle Scholar
  29. 29.
    Melikov K., Chernomordik L.V. 2005. Arginine-rich cell penetrating peptides: From endosomal uptake to nuclear delivery. Cell. Mol. Life Sci. 62, 2739–2749.PubMedGoogle Scholar
  30. 30.
    Derossi D., Calvet S., Trembleau A., Brunissen A., Chassaing G., Prochiantz A. 1996. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J. Biol. Chem. 271, 18188–18193.PubMedGoogle Scholar
  31. 31.
    Pooga M., Hallbrink M., Zorko M., Langel U. 1998. Cell penetration by transportan. FASEB J. 12, 67–77.PubMedGoogle Scholar
  32. 32.
    Cohen J.L., Almutairi A., Cohen J.A., Bernstein M., Brody S.L., Schuster D.P., Fréchet J.M. 2008. Enhanced cell penetration of acid-degradable particles functionalized with cell-penetrating peptides. Bioconjug. Chem. 19, 876–881.PubMedGoogle Scholar
  33. 33.
    Deshayes S., Morris M.C., Divita G., Heitz F. 2005. Cell-penetrating peptides: Tools for intracellular delivery of therapeutics. Cell. Mol. Life Sci. 62, 1839–1849.PubMedGoogle Scholar
  34. 34.
    Futaki S., Ohashi W., Suzuki T., Niwa M., Tanaka S., Ueda K., Harashima H., Sugiura Y. 2001. Stearylated arginine-rich peptides: A new class of transfection systems. Bioconjug. Chem. 12, 1005–1011.PubMedGoogle Scholar
  35. 35.
    Console S., Marty C., Garcia-Echeverria C., Schwendener R., Ballmer-Hofer K. 2003. Antennapedia and HIV transactivator of transcription (TAT) “protein transduction domains” promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans. J. Biol. Chem. 278, 35109–35114.PubMedGoogle Scholar
  36. 36.
    Zhang W., Smith S.O. 2005. Mechanism of penetration of Antp(43-58) into membrane bilayers. Biochemistry. 44, 10110–10118.PubMedGoogle Scholar
  37. 37.
    Futaki S., Nakase I., Tadokoro A., Takeuchi T., Jones A.T. 2007. Arginine-rich peptides and their internalization mechanisms. Biochem. Soc. Trans. 35, 784–787.PubMedGoogle Scholar
  38. 38.
    Nakase I., Niwa M., Takeuchi T., Sonomura K., Kawabata N., Koike Y., Takehashi M., Tanaka S., Ueda K., Simpson J.C., Jones A.T., Sugiura Y., Futaki S. 2004. Cellular uptake of arginine-rich peptides: Roles for macropinocytosis and actin rearrangement. Mol. Ther. 10, 1011–1022.PubMedGoogle Scholar
  39. 39.
    Nakase I., Tadokoro A., Kawabata N., Takeuchi T., Katoh H., Hiramoto K., Negishi M., Nomizu M., Sugiura Y., Futaki S. 2007. Interaction of argininerich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis. Biochemistry. 46, 492–501.PubMedGoogle Scholar
  40. 40.
    Tokatlian T., Segura T. 2010. siRNA applications in nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 305–315.PubMedGoogle Scholar
  41. 41.
    Eguchi A., Meade B.R., Chang Y.C., Fredrickson C.T., Willert K., Puri N., Dowdy S.F. 2009. Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein. Nature Biotechnol. 27, 567–571.Google Scholar
  42. 42.
    Kim W.J., Christensen L.V., Jo S., Yockman J.W., Jeong J.H., Kim Y.H., Kim S.W. 2006. Cholesteryl oligoarginine delivering vascular endothelial growth factor siRNA effectively inhibits tumor growth in colon adenocarcinoma. Mol. Ther. 14, 343–350.PubMedGoogle Scholar
  43. 43.
    Kumar L.D., Clarke A.R. 2007. Gene manipulation through the use of small interfering RNA (siRNA): From in vitro to in vivo applications. Adv. Drug Deliv. Rev. 59, 87–100.PubMedGoogle Scholar
  44. 44.
    Oishi M., Nagasaki Y., Itaka K., Nishiyama N., Kataoka K. 2005. Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile beta-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J. Am. Chem. Soc. 127, 1624–1625.PubMedGoogle Scholar
  45. 45.
    Rozema D.B., Lewis D.L., Wakefield D.H., Wong S.C., Klein J.J., Roesch P.L., Bertin S.L., Reppen T.W., Chu Q., Blokhin A.V., Hagstrom J.E., Wolff J.A. 2007. Dynamic Polyconjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc. Natl. Acad. Sci. U. S. A. 104, 12982–12987.PubMedGoogle Scholar
  46. 46.
    Wolfrum C., Shi S., Jayaprakash K.N., Jayaraman M., Wang G., Pandey R.K., Rajeev K.G., Nakayama T., Charrise K., Ndungo E.M., Zimmermann T., Koteliansky V., Manoharan M., Stoffel M. 2007. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nature Biotechnol. 25, 1149–1157.Google Scholar
  47. 47.
    Nishina K., Unno T., Uno Y., Kubodera T., Kanouchi T., Miz U. S. Awa H., Yokota T. 2008. Efficient in vivo delivery of siRNA to the liver by conjugation of alpha-tocopherol. Mol. Ther. 16, 734–740.PubMedGoogle Scholar
  48. 48.
  49. 49.
    Check Hayen E. 2008. Thousands of proteins affected by miRNAs. Nature. 454, 562.Google Scholar
  50. 50.
    Hung C.F., Lu K.C., Cheng T.L., Wu R.H., Huang L.Y., Teng C.F., Chanq W.T. 2006. A novel siRNA validation system for functional screening and identification of effective RNAi probes in mammalian cells. Biochem. Biophys. Res. Commun. 346, 707–720.PubMedGoogle Scholar
  51. 51.
    Alsheddi T., Vasin L., Meduri R., Randhawa M., Glazko G., Baranova A. 2008. siRNAs with high specificity to the target: A systematic design by CRM algorithm. Mol. Biol. (Moscow). 42, 163–171.Google Scholar
  52. 52.
    Tilesi F., Fradiani P., Socci V., Willems D., Ascenzioni F. 2009. Design and validation of siRNAs and shRNAs. Curr. Opin. Mol. Ther. 11, 156–164.PubMedGoogle Scholar
  53. 53.
    Baranova A., Bode J., Manyam G., Emelianenko M. 2011. An efficient algorithm for systematic analysis of nucleotide strings suitable for siRNA design. BMC Res. Notes. 27, 168.Google Scholar
  54. 54.
    Birmingham A., Anderson E.M., Reynolds A., Ilsley-Tyree D., Leake D., Fedorov Y., Baskerville S., Maksimova E., Robinson K., Karpilow J., Marshall W.S., Khvorova A. 2006. 3’ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nature Methods. 3, 199–204.PubMedGoogle Scholar
  55. 55.
    Weitzer S., Martinez J. 2007. hClp1: A novel kinase revitalizes RNA metabolism. Cell Cycle. 6, 2133–2137.PubMedGoogle Scholar
  56. 56.
    Chen P.Y., Weinmann L., Gaidatzis D., Pei Y., Zavolan M., Tuschl T., Meister G. 2008. Strand-specific 5’-O-methylation of siRNA duplexes controls guide strand selection and targeting specificity. RNA. 14, 263–274.PubMedGoogle Scholar
  57. 57.
    Off-Target Effects: Disturbing the Silence of RNA interference (RNAi).
  58. 58.
    Kirchhoff F. 2008. Silencing HIV-1 in vivo. Cell. 134, 566–568.PubMedGoogle Scholar
  59. 59.
    Leng Q., Woodle M.C., Lu P.Y., Mixson A.J. 2009. Advances in systemic siRNA delivery. Drugs Future. 34, 721.PubMedGoogle Scholar
  60. 60.
    Li W., Szoka Jr.F.C. 2007. Lipid-based nanoparticles for nucleic acid delivery. Pharm. Res. 24, 438–449.PubMedGoogle Scholar
  61. 61.
    Juliano R., Bauman J., Kang H., Ming X. 2009. Biological barriers to therapy with antisense and siRNA oligonucleotides. Mol. Pharm. 6, 686–695.PubMedGoogle Scholar
  62. 62.
    Scherphof G.L. 1991. In vivo behavior of liposomes: Interactions with the mononuclear phagocyte system and implications for drug targeting. In: Handbook of Experimental Pharmacology. Ed. Juliano R.L. Berlin: Springer, vol. 100, pp. 285–300.Google Scholar
  63. 63.
    Shim M.S., Kwon Y.J. 2010. Efficient and targeted delivery of siRNA in vivo. FEBS J. 277, 4814–4827.PubMedGoogle Scholar
  64. 64.
    Jang S.H., Wientjes M.G., Lu D., Au J.L. 2003. Drug delivery and transport to solid tumors. Pharm. Res. 20, 1337–13350.PubMedGoogle Scholar
  65. 65.
    Cho-Rock J., Yoo J., Jang Y.J., Kim S., Chu I.-S., Yeom Y.I., Choi J.Y., Im D.-S. 2006. Adenovirus-mediated transfer of siRNA against PTTG1 inhibits liver cancer cell growth in vitro and in vivo. Hepatology. 43, 1042–1052.Google Scholar
  66. 66.
    Juliano R., Alam M.R., Dixit V., Kang H. 2008. Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res. 36, 4158–4171.PubMedGoogle Scholar
  67. 67.
    Khalil I.A., Kogure K., Akita H., Harashima H. 2006. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol. Rev. 58, 32–45.PubMedGoogle Scholar
  68. 68.
    Rejman J., Oberle V., Zuhorn I.S., Hoekstra D. 2004. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 377, 159–169.PubMedGoogle Scholar
  69. 69.
    Spagnou S., Miller A.D., Keller M. 2004. Lipidic carriers of siRNA: Differences in the formulation, cellular uptake, and delivery with plasmid DNA. Biochemistry. 43, 13348–13356.PubMedGoogle Scholar
  70. 70.
    Tong A.W., Jay C.M., Senzer N., Maples P.B., Nemunaitis J. 2009. Systemic therapeutic gene delivery for cancer: crafting Paris’ arrow. Curr. Gene Ther. 9, 45–60.PubMedGoogle Scholar
  71. 71.
    Zelphati O., Uyechi L.S., Barron L.G., Szoka Jr.F.C. 1998. Effect of serum components on the physicochemical properties of cationic lipid/oligonucleotide complexes and on their interactions with cells. Biochim. Biophys. Acta. 1390, 119–133.PubMedGoogle Scholar
  72. 72.
    Li S., Huang L. 1997. In vivo gene transfer via intravenous administration of cationic lipid-protamine-DNA (LPD) complexes. Gene Ther. 4, 891–900.PubMedGoogle Scholar
  73. 73.
    Liu F., Qi H., Huang L., Liu D. 1997. Factors controlling the efficiency of cationic lipid-mediated transfection in vivo via intravenous administration. Gene Ther. 4, 517–523.PubMedGoogle Scholar
  74. 74.
    Oja C.D., Semple S.C., Chonn A., Cullis P. 1996. Influence of dose on liposome clearance: Critical role of blood proteins. Biochim. Biophys. Acta. 1281, 31–37.PubMedGoogle Scholar
  75. 75.
    Semple S.C., Chonn A., Cullis P. 1996. Influence of cholesterol on the association of plasma proteins with liposomes. Biochemistry. 35, 2521–2525.PubMedGoogle Scholar
  76. 76.
    David S., Pitard B., Benoît J.P., Passirani C. 2010. Non-viral nanosystems for systemic siRNA delivery. Pharmacol. Res. 62, 100–114.PubMedGoogle Scholar
  77. 77.
    Ogris M., Wagner E. 2002. Targeting tumors with nonviral gene delivery systems. Drug Discov. Today. 7, 479–485.PubMedGoogle Scholar
  78. 78.
    Gref R., Minamitake Y., Peracchia M.T., Trubetskoy V., Torchilin V., Langer R. 1994. Biodegradable long-circulating polymeric nanospheres. Science. 263, 1600–1603.PubMedGoogle Scholar
  79. 79.
    Veronses F.M., Pasut G. 2005. PEGylation, successful approach to drug delivery. Drug Discovery Today. 10, 1451–1458.Google Scholar
  80. 80.
    Guo J., Fisher K.A., Darcy R., Cryan J.F., O’Driscoll C. 2010. Therapeutic targeting in the silent era: advances in non-viral siRNA delivery. Mol. Biosys. 6, 1143–1161.Google Scholar
  81. 81.
    Ishida T., Kiwada H. 2008. Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int. J. Pharm. 354, 56–62.PubMedGoogle Scholar
  82. 82.
    Kim E.J., Shim G., Kim K., Kwon I.C., Oh Y.K., Shim C.K. 2009. Hyaluronic acid complexed to biodegradable poly L-arginine for targeted delivery of siRNAs. J. Gene Med. 11, 791–803.PubMedGoogle Scholar
  83. 83.
    Wang Y., Li Z., Han Y., Liang L.H., Ji A. 2010. Nanoparticle-based delivery system for application of siRNA in vivo. Curr. Drug Metab. 11, 182–196.PubMedGoogle Scholar
  84. 84.
    Jiang G., Park K., Kim J., Kim K.S., Hahn S.K. 2009. Target-specific intracellular delivery of siRNA/PEIHA complex by receptor mediated endocytosis. Mol. Pharm. 6, 727–737.PubMedGoogle Scholar
  85. 85.
    de Martimprey H., Vauthier C., Malvy C., Couvreur P. 2009. Polymer nanocarriers for the delivery of small fragments of nucleic acids: Oligonucleotides and siRNA. Eur. J. Pharm. Biopharm. 71, 490–504.PubMedGoogle Scholar
  86. 86.
    Kircheis R., Schuller S., Brunner S., Ogris M., Heider K.H., Zauner W., Wagner E. J. 1999. Polycation-based DNA complexes for tumor-targeted gene delivery in vivo. Gene Med. 1, 111–120.Google Scholar
  87. 87.
    Pitard B., Oudrhiri N., Lambert O., Vivien E., Masson C., Wetzer B., Hauchecorne M., Scherman D., Rigaud J.L., Vigneron J.P., Lehn J.M., Lehn P. 2001. Sterically stabilized BGTC-based lipoplexes: Structural features and gene transfection into the mouse airways in vivo. Gene Med. 3, 478–487.Google Scholar
  88. 88.
    Pack D.W., Hoffman A.S., Pun S., Stayton P.S. 2005. Design and development of polymers for gene delivery. Nature Rev. Drug Discovery. 4, 581–593.Google Scholar
  89. 89.
    Howard K.A., Rahbek U.L., Liu X., Damgaard C.K., Glud S.Z., Andersen M.O., Hovgaard M.B., Schmitz A., Nyengaard J.R., Besenbacher F., Kjems J. 2006. RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol. Ther. 14, 476–484.PubMedGoogle Scholar
  90. 90.
    Zhang X., Shan P., Jiang D., Noble P.W., Abraham N.G., Kappas A., Lee P.J. 2004. Small interfering RNA targeting heme oxygenase-1 enhances ischemia-reperfusion-induced lung apoptosis. J. Biol. Chem. 279, 10677–10684.PubMedGoogle Scholar
  91. 91.
    Bitko V., Musiyenko A., Shulyayeva O., Barik S. 2005. Inhibition of respiratory viruses by nasally administered siRNA. Nature Med. 11, 50–55.PubMedGoogle Scholar
  92. 92.
    de Vry J., Martínez-Martínez P., Losen M., Temel Y., Steckler T., Steinbusch H.W., de Baets M.H., Prickaerts J. 2010. In vivo electroporation of the central nervous system: a non-viral approach for targeted gene delivery. Prog. Neurobiol. 92, 227–44.PubMedGoogle Scholar
  93. 93.
    Makimura H., Mizuno T.M., Mastaitis J.W., Agami R., Mobbs C.V. 2002. Reducing hypothalamic AGRP by RNA interference increases metabolic rate and decreases body weight without influencing food intake. BMC Neurosci. 3, 18.PubMedGoogle Scholar
  94. 94.
    Thakker D.R., Natt F., Hüsken D., Maier R., Müller M., van der Putten H., Hoyer D., Cryan J.F. 2004. Neurochemical and behavioral consequences of widespread gene knockdown in the adult mouse brain by using nonviral RNA interference. Proc. Natl. Acad. Sci. U. S. A. 101, 17270–17275.PubMedGoogle Scholar
  95. 95.
    Thakker D.R., Hüsken D., van der Putten H., Maier R., Hoyer D., Cryan J.F. 2005. siRNA-mediated knock-down of the serotonin transporter in the adult mouse brain. Mol. Psychiatry. 10, 782–789, 714.PubMedGoogle Scholar
  96. 96.
    Dorn G., Patel S., Wotherspoon G., Hemmings-Mieszczak M., Barclay J., Natt F.J., Martin P., Bevan, S., Fox A., Ganju P., Wishart W., Hall J. 2004. siRNA relieves chronic neuropathic pain. Nucleic Acids Res. 32, e49.PubMedGoogle Scholar
  97. 97.
    Emerson M.V., Lauer A.K. 2007. Emerging therapies for the treatment of neovascular age-related macular degeneration and diabetic macular edema. BioDrugs. 21, 245–257.PubMedGoogle Scholar
  98. 98.
    Tompkins S.M., Lo C.Y., Tumpey T.M., Epstein S.L. 2004. Protection against lethal influenza virus challenge by RNA interference in vivo. Proc. Natl. Acad. Sci. U. S. A. 101, 8682–8686.PubMedGoogle Scholar
  99. 99.
    Chae S.S., Paik J.H., Furneaux H., Hla T. 2004. Requirement for sphingosine 1-phosphate receptor-1 in tumor angiogenesis demonstrated by in vivo RNA interference. J. Clin. Invest. 114, 1082–1089.PubMedGoogle Scholar
  100. 100.
    Song E., Zhu P., Lee S.K., Chowdhury D., Kussman S., Dykxhoorn D.M., Feng Y., Palliser D., Weiner D.B., Shankar P., Marasco W.A., Lieberman J. 2005. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nature Biotechnol. 23, 709–717.Google Scholar
  101. 101.
    Wu S.Y., McMillan N.A. 2009. Lipidic systems for in vivo siRNA delivery. AAPS J. 11, 639–652.PubMedGoogle Scholar
  102. 102.
    Palliser D., Chowdhury D., Wang Q.Y., Lee S.J., Bronson R.T., Knipe D.M., Lieberman J. 2006. An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature. 439, 89–94.PubMedGoogle Scholar
  103. 103.
    Azuma M., Ritprajak P., Hashiguchi M. 2010. Topical application of siRNA targeting cutaneous dendritic cells in allergic skin disease. Methods Mol. Biol. 623, 373–381.PubMedGoogle Scholar
  104. 104.
    Takanashi M., Oikawa K., Sudo K., Tanaka M., Fujita K., Ishikawa A., Nakae S., Kaspar R.L., Matsuzaki M., Kudo M., Kuroda M. 2009. Therapeutic silencing of an endogenous gene by siRNA cream in an arthritis model mouse. Gene Ther. 16, 982–989.PubMedGoogle Scholar
  105. 105.
    Manjunath N., Dykxhoorn D.M. 2010. Advances in synthetic siRNA delivery. Discov. Med. 9, 418–430.PubMedGoogle Scholar
  106. 106.
    Pirollo K.F., Rait A., Zhou Q., Hwang S.H., Dagata J.A., Zon G., Hogrefe R.I., Palchik G., Chang E.H. 2007. Materializing the potential of small interfering RNA via a tumor-targeting nanodelivery system. Cancer Res. 67, 2938–2943.PubMedGoogle Scholar
  107. 107.
    Peer D., Zhu P., Carman C.V., Lieberman J., Shimaoka M. 2007. Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc. Natl. Acad. Sci. U. S. A. 104, 4095–4100.PubMedGoogle Scholar
  108. 108.
    Sato A., Takagi M., Shimamoto A., Kawakami S., Hashida M. 2007. Small interfering RNA delivery to the liver by intravenous administration of galactosylated cationic liposomes in mice. Biomaterials. 28, 1434–1442.PubMedGoogle Scholar
  109. 109.
    Hu-Lieskovan S., Heidel J.D., Bartlett D.W., Davis M.E., Triche T.J. 2005. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res. 65, 8984–8992.PubMedGoogle Scholar
  110. 110.
    Schiffelers R.M., Ansari A., Xu J., Zhou Q., Tang Q., Storm G., Molema G., Lu P.Y., Scaria P.V., Woodle M.C. 2004. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 32, e149.PubMedGoogle Scholar
  111. 111.
    Maeda H. 2001. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41, 189–207.PubMedGoogle Scholar
  112. 112.
    Greish K. 2010. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol. 624, 25–37.PubMedGoogle Scholar
  113. 113.
    Zhou J., Rossi J.J. 2010. Aptamer-targeted cell-specific RNA interference. Silence. 1, 4.PubMedGoogle Scholar
  114. 114.
    Gold L., Polisky B., Uhlenbeck O., Yarus M. 1995. Diversity of oligonucleotide functions. Annu. Rev. Biochem. 64, 763–797.PubMedGoogle Scholar
  115. 115.
    Dassie J.P., Liu X.Y., Thomas G.S., Whitaker R.M., Thiel K.W., Stockdale K.R., Meyerholz D.K., McCaffrey A.P., McNamara J.O., Giangrande P.H. 2009. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nature Biotechnol. 27, 839–849.Google Scholar
  116. 116.
    McNamara J.O., Andrechek E.R., Wang Y., Viles K.D., Rempel R.E., Gilboa E., Sullenger B.A., Giangrande P.H. 2006. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nature Biotechnol. 24, 1005–1015.Google Scholar
  117. 117.
    Peer D., Park E.J., Morishita Y., Carman C.V., Shimaoka M. 2008. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science. 319, 627–630.PubMedGoogle Scholar
  118. 118.
    Zhang Y., Zhang Y.F., Bryant J., Charles A., Boado R.J., Pardridge W.M. 2004. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin. Cancer Res. 10, 3667–3677.PubMedGoogle Scholar
  119. 119.
    Watanabe T., Umehara T., Yasui F., Nakagawa S., Yano J., Ohgi T., Sonoke S., Satoh K., Inoue K., Yoshiba M., Kohara M. 2007. Liver target delivery of small interfering RNA to the HCV gene by lactosylated cationic liposome. J. Hepatol. 47, 744–750.PubMedGoogle Scholar
  120. 120.
    Chen Y., Sen J., Bathula S.R., Yang Q., Fittipaldi R., Huang L. 2009. Novel cationic lipid that delivers siRNA and enhances therapeutic effect in lung cancer cells. Mol. Pharm. 6, 696–705.PubMedGoogle Scholar
  121. 121.
    Senior J.H., Trimble K.R., Maskiewicz R. 1991. Interaction of positively-charged liposomes with blood: implications for their application in vivo. Biochim. Biophys. Acta. 1070, 173–179.PubMedGoogle Scholar
  122. 122.
    Sakurai F., Nishioka T., Saito H., Baba T., Okuda A., Matsumoto O., Taga T., Yamashita F., Takakura Y., Hashida M. 2001. Interaction between DNA-cationic liposome complexes and erythrocytes is an important factor in systemic gene transfer via the intravenous route in mice: the role of the neutral helper lipid. Gene Ther. 8, 677–686.PubMedGoogle Scholar
  123. 123.
    Oyewumi M.O., Yokel R.A., Jay M., Coakley T., Mumper R.J. 2004. Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice. J. Control Release. 95, 613–626.PubMedGoogle Scholar
  124. 124.
    Richardson S.C., Kolbe H.V., Duncan R. 1999. Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution, and ability to complex and protect DNA. Int. J. Pharm. 178, 231–243.PubMedGoogle Scholar
  125. 125.
    Akhtar S., Benter I. 2007. Toxicogenomics of nonviral drug delivery systems for RNAi: potential impact on siRNA-mediated gene silencing activity and specificity. Adv. Drug Deliv. Rev. 59, 164–182.PubMedGoogle Scholar
  126. 126.
    Hollins A.J., Omidi Y., Benter I.F., Akhtar S. 2007. Toxicogenomics of drug delivery systems: Exploiting delivery system-induced changes in target gene expression to enhance siRNA activity. J. Drug Target. 15, 83–88.PubMedGoogle Scholar
  127. 127.
    Omidi Y., Hollins A.J., Drayton R.M., Akhtar S. 2005. Polypropylenimine dendrimer-induced gene expression changes: The effect of complexation with DNA, dendrimer generation and cell type. J. Drug Target. 13, 431–443.PubMedGoogle Scholar
  128. 128.
    Omidi Y., Hollins A.J., Benboubetra M., Drayton R., Benter I.F., Akhtar S. 2003. Toxicogenomics of nonviral vectors for gene therapy: A microarray study of lipofectin- and oligofectamine-induced gene expression changes in human epithelial cells. J. Drug Target. 6, 311–323.Google Scholar
  129. 129.
    Elbashir S.M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T. 2001. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 411, 494–498.PubMedGoogle Scholar
  130. 130.
    Hornung V., Guenthner-Biller M., Bourquin C., Ablasser A., Schlee M., Uematsu S., Noronha A., Manoharan M., Akira S., de Fougerolles A., Endres S., Hartmann G. 2005. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nature Med. 11, 263–270.PubMedGoogle Scholar
  131. 131.
    Sioud M., Sørensen D.R. 2003. Cationic liposome-mediated delivery of siRNAs in adult mice. Biochem. Biophys. Res. Commun. 312, 1220–1225.PubMedGoogle Scholar
  132. 132.
    Judge A.D., Sood V., Shaw J.R., Fang D., McClintock K., MacLachlan I. 2005. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nature Biotechnol. 23, 457–462.Google Scholar
  133. 133.
    Kariko K., Bhuyan P., Capodici J., Weissman D. 2004. Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J. Immunol. 172, 6545–6549.PubMedGoogle Scholar
  134. 134.
    Marques J.T., Williams B.R.G. 2005. Activation of the mammalian immune system by siRNAs. Nature Biotechnol. 23, 1399–1405.Google Scholar
  135. 135.
    Robbins M., Judge A., MacLachlan I. 2009. siRNA and innate immunity. Oligonucleotides. 19, 89–102.PubMedGoogle Scholar
  136. 136.
    Ma Z., Li J., He F., Wilson A., Pitt B., Li S. 2005. Cationic lipids enhance siRNA-mediated interferon response in mice. Biochem. Biophys. Res. Commun. 330, 755–759.PubMedGoogle Scholar
  137. 137.
    Ge Q., Filip L., Bai A., Nguyen T., Eisen H.N., Chen J. 2004. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc. Natl. Acad. Sci. U. S. A. 101, 8676–8681.PubMedGoogle Scholar
  138. 138.
    Soutschek J., Akinc A., Bramlage B., Charisse K., Constien R., Donoghue M., Elbashir S., Geick A., Hadwiger P., Harborth J., John M., Kesavan V., Lavine G., Pandey R.K., Racie T., Rajeev K.G., Röhl I., Toudjarska I., Wang G., Wuschko S., Bumcrot D., Koteliansky V., Limmer S., Manoharan M., Vornlocher H.P. 2004. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 432, 173–178.PubMedGoogle Scholar
  139. 139.
    Zimmermann T.S., Lee A.C., Akinc A., Bramlage B., Bumcrot D., Fedoruk, M.N., Harborth J., Heyes J.A., Jeffs L.B., John M., Judge A.D., Lam K., McClintock K., Nechev L.V., Palmer L.R., Racie T., Röhl I., Seiffert S., Shanmugam S., Sood V., Soutschek J., Toudjarska I., Wheat A.J., Yaworski E., Zedalis W., Koteliansky V., Manoharan M., Vornlocher H.P., MacLachlan I. 2006. RNAi-mediated gene silencing in non-human primates. Nature. 441, 111–114.PubMedGoogle Scholar
  140. 140.
    Gantier M.P., Tong S., Behlke M.A., Irving A.T., Lappas M., Nilsson U.W., Latz E., McMillan N.A., Williams B.R. 2010. Rational design of immunostimulatory siRNAs. Mol. Ther. 18, 785–795.PubMedGoogle Scholar
  141. 141.
    Furset G., Sioud M. 2007. Design of bifunctional siRNAs: Combining immunostimulation and gene-silencing in one single siRNA molecule. Biochem. Biophys. Res. Commun. 352, 642–649.PubMedGoogle Scholar
  142. 142.
    Poeck H., Besch R., Maihoefer C., Renn M., Tormo D., Morskaya S.S., Kirschnek S., Gaffal E., Landsberg J., Hellmuth J., Schmidt A., Anz D., Bscheider M., Schwerd T., Berking C., Bourquin C., Kalinke U., Kremmer E., Kato H., Akira S., Meyers R., Häcker G., Neuenhahn M., Busch D., Ruland J., Rothenfusser S., Prinz M., Hornung V., Endres S., Tüting T., Hartmann G. 2008. 5′-Triphosphate-siRNA: turning gene silencing and Rig-I activation against melanoma. Nature Med. 14, 1256–1263.PubMedGoogle Scholar
  143. 143.
    Liu S., Shibata A., Ueno S., Huang Y., Wang Y., Li Y. 2006. Translocation of positively charged copoly(Lys/Tyr) across phospholipid membranes. Biochem. Biophys. Res. Commun. 339, 761–768.PubMedGoogle Scholar
  144. 144.
    Cedervall T., Lynch I., Lindman S., Berggard T., Thulin E., Nilsson H., Dawson K.A., Linse S. 2007. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 104, 2050–2055.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • K. V. Glebova
    • 1
  • A. V. Marakhonov
    • 1
  • A. V. Baranova
    • 1
    • 2
  • M. Yu. Skoblov
    • 1
  1. 1.Research Center for Medical GeneticsRussian Academy of Medical SciencesMoscowRussia
  2. 2.School of Systems BiologyGeorge Mason UniversityFairfaxUSA

Personalised recommendations