Molecular Biology

, Volume 46, Issue 2, pp 304–315 | Cite as

Structure-functional organization of eukaryotic high-affinity copper importer CTR1 determines its ability to transport copper, silver, and cisplatin

  • A. N. Skvortsov
  • E. A. Zatulovskiy
  • L. V. Puchkova
Structural and Functional Analysis of Biopolymers and Their Complexes


It was shown recently, that high affinity Cu(I) importer eukaryotic protein CTR1 can also transport in vitro abiogenic Ag(I) ions and anticancer drug cisplatin. At present, there is no rational explanation how CTR1 can transfer platinum group which is different by coordination properties from highly similar Cu(I) and Ag(I). To understand the phenomenon, we analyzed 25 sequences of chordate CTR1 proteins and found out the conserved patterns of organization of N-terminal extracellular part of CTR1 which is responsible for initial metal binding. Extracellular copper-binding motifs were qualified by their coordination properties. It was shown that the relative position of methionine- and histidine-rich copper-binding motifs predisposes the extracellular CTR1 region to binding of copper, silver, and cisplatin. Relation between the tissuespecific expression of the CTR1 gene, steady-state copper concentration, and silver and platinum accumulation in organs of mice in vivo were analyzed. Significant positive yet incomplete correlation was found to exist between these variables. Basing on structural and functional peculiarities of N-terminal part of CTR1 a hypothesis of coupled transport of copper and cisplatin has been suggested which avoids disagreement between CTR1-mediated cisplatin transport in vitro and irreversible binding of platinum to Met-rich peptides.


CTR1 copper metabolism silver transport cisplatin molecular evolution correlation analysis 



principal component


transmembrane domain


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Karlin K.D. 1993. Metalloenzymes, structural motif, and inorganic models. Science. 261, 701–717.PubMedCrossRefGoogle Scholar
  2. 2.
    Rosenzweig A.C., Sazinsky M.H. 2006. Structural insights into dioxygen-activating copper enzymes. Curr. Opin. Struct. Biol. 16, 729–735.PubMedCrossRefGoogle Scholar
  3. 3.
    Madsen E., Gitlin J.D. 2007. Copper and iron disorders of the brain. Annu. Rev. Neurosci. 30, 317–337.PubMedCrossRefGoogle Scholar
  4. 4.
    Mufti A.R., Burstein E., Duckett C.S. 2007. XIAP: Cell death regulation meets copper homeostasis. Arch. Biochem. Biophys. 463, 168–174.PubMedCrossRefGoogle Scholar
  5. 5.
    Martin F., Linden T., Katschinski D.M. 2005. Copperdependent activation of hypoxia-inducible factor (HIF)-1: Implications for ceruloplasmin regulation. Blood. 105, 4613–4619.PubMedCrossRefGoogle Scholar
  6. 6.
    Gaggelli E., Kozlowski H., Valensin D., Valensin G. 2006. Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem. Rev. 106, 1995–2044.PubMedCrossRefGoogle Scholar
  7. 7.
    Aller S., Unger V. 2006. Projection structure of the human copper transporter CTR1 at 6-Å resolution reveals a compact trimer with a novel channel-like architecture. Proc. Natl. Acad. Sci. U. S. A. 103, 3627–3632.PubMedCrossRefGoogle Scholar
  8. 8.
    Samsonov S.A., Platonova N.A., Skvortsov A.N., Tsymbalenko N.V., Vasin A.V., Puchkova L.V. 2006. Relationships between CTR1 activity and copper status in different rat organs. Mol. Biol. (Moscow). 40, 207–217.CrossRefGoogle Scholar
  9. 9.
    Sharp P. 2003. Ctr1 and its role in body copper homeostasis. Int. J. Biochem. Cell Biol. 35, 288–291.PubMedCrossRefGoogle Scholar
  10. 10.
    Lee J., Pena M.M., Nose Y., Thiele D.J. 2002. Biochemical characterization of the human copper transporter Ctr1. J. Biol. Chem. 277, 4380–4387.PubMedCrossRefGoogle Scholar
  11. 11.
    Bertinato J., Cheung L., Hoque R., Plouffe L.J. 2010. Ctr1 transports silver into mammalian cells. J. Trace Elem. Med. Biol. 24, 178–184.PubMedCrossRefGoogle Scholar
  12. 12.
    Ishida S., Lee J., Thiele D.J., Herskowitz I. 2002. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc. Natl. acad. Sci. U. S. A. 99, 14298–14302.PubMedCrossRefGoogle Scholar
  13. 13.
    Kuo M.T., Chen H.H.W., Song I.S., Savaraj N., Ishikawa T. 2007. The roles of copper transporters in cisplatin resistance. Cancer Metastasis Rev. 26, 71–83.PubMedCrossRefGoogle Scholar
  14. 14.
    De Feo C.J., Aller S.G., Siluvai G.S., Blackburn N.J., Unger V.M. 2009. Three-dimensional structure of the human copper transporter hCTR1. Proc. Natl. Acad. Sci. U. S. A. 106, 4237–4242.PubMedCrossRefGoogle Scholar
  15. 15.
    Ilyechova E., Skvortsov A., Zatulovsky E., Tsymbalenko N., Shavlovsky M., Broggini M., Puchkova L. 2011. Experimental switching of copper status in laboratory rodents. J. Trace Elem. Med. Biol. 25, 27–35.PubMedCrossRefGoogle Scholar
  16. 16.
    Klotchenko S.A., Tsymbalenko N.V., Solov’ev K.V., Skvortsov A.N., Zatulovskii E.A., Babich P.S., Platonova N.A., Shavlovskii M.M., Puchkova L.V., Broggini M. 2008. The effect of silver ions on copper metabolism and expression of genes encoding copper transport proteins in rat liver. Dokl. Biochem. Biophys. 418, 24–27.PubMedCrossRefGoogle Scholar
  17. 17.
    Brereton R.G. 2007. Applied Chemometrics for Scientists. Chichester: Wiley.CrossRefGoogle Scholar
  18. 18.
    Engelman D.M., Steitz T.A., Goldman A. 1986. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu. Rev. Biophys. Biophys. Chem. 15, 321–353.PubMedCrossRefGoogle Scholar
  19. 19.
    Jones D.T., Taylor W.R., Thornton J.M. 1994. A mutation data matrix for transmembrane proteins. FEBS Lett. 339, 269–275.PubMedCrossRefGoogle Scholar
  20. 20.
    Puig S., Lee J., Lau M., Thiele D.J. 2002. Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake. J. Biol. Chem. 277, 26021–26030.PubMedCrossRefGoogle Scholar
  21. 21.
    Klomp A.E., Juijn J.A., van der Gun L.T., van den Berg I.E., Berger R., Klomp L.W. 2003. The N-terminus of the human copper transporter 1 (hCTR1) is localized extracellularly, and interacts with itself. Biochem. J. 370, 881–889.PubMedCrossRefGoogle Scholar
  22. 22.
    Abada P., Howell S.B. 2010. Regulation of cisplatin cytotoxicity by Cu influx transporters. Metal. Based. Drugs. 2010:317581.PubMedCrossRefGoogle Scholar
  23. 23.
    van den Berghe P.V., Folmer D.E., Malingré H.E., van Beurden E., Klomp A.E., van de Sluis B., Merkx M., Berger R., Klomp L.W. 2007. Human copper transporter 2 is localized in late endosomes and lysosomes and facilitates cellular copper uptake. Biochem J. 407, 49–59.PubMedCrossRefGoogle Scholar
  24. 24.
    De Feo C.J., Mootien S., Unger V.M. 2010. Tryptophan scanning analysis of the membrane domain of CTR-copper transporters. J. Membr. Biol. 234, 113–123.PubMedCrossRefGoogle Scholar
  25. 25.
    Gilmore R., Blobel G. 1985. Translocation of secretory proteins across the microsomal membrane occurs through an environment accessible to aqueous perturbants. Cell. 42, 497–505.PubMedCrossRefGoogle Scholar
  26. 26.
    Aller S., Eng E., De Feo C., Unger V. 2004. Eukaryotic CTR copper uptake transporters require two faces of the third transmembrane domain for helix packing, oligomerization, and function. J. Biol. Chem. 279, 53435–53441.PubMedCrossRefGoogle Scholar
  27. 27.
    Klomp A.E., Tops B.B., van Denberg I.E., Berger R., Klomp L.W. 2002. Biochemical characterization and subcellular localization of human copper transporter 1 (hCTR1). Biochem. J. 364, 497–505.PubMedCrossRefGoogle Scholar
  28. 28.
    Guo Y., Smith K., Lee J., Thiele D.J., Petris M.J. 2004. Identification of methionine-rich clusters that regulate copper-stimulated endocytosis of the human Ctr1 copper transporter. J. Biol. Chem. 279, 17428–17433.PubMedCrossRefGoogle Scholar
  29. 29.
    Larson C.A., Adams P.L., Jandial D.D., Blair B.G., Safaei R., Howell S.B. 2010. The role of the N-terminus of mammalian copper transporter 1 in the cellular accumulation of cisplatin. Biochem. Pharmacol. 80, 448–454.PubMedCrossRefGoogle Scholar
  30. 30.
    Parr R.G., Pearson R.G. 1983. Absolute hardness: Companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105, 7512–7516.CrossRefGoogle Scholar
  31. 31.
    Sarmah P., Deka R.C. 2008. Solvent effect on the reactivity of CIS-platinum(II) complexes: A density functional approach. Int. J. Quantum Chem. 108, 1400–1409.CrossRefGoogle Scholar
  32. 32.
    Shannon R.D. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. Sec. A. 32, 751–767.CrossRefGoogle Scholar
  33. 33.
    CRC Handbook of Chemistry and Physics, 86th ed. 2005. Ed. Lide D.R. CRC Press.Google Scholar
  34. 34.
    Rubino J.T., Riggs-Gelasco P., Franz K.J. 2010. Methionine motifs of copper transport proteins provide general and flexible thioether-only binding sites for Cu(I) and Ag(I). J. Biol. Inorg. Chem. 15, 1033–1049.PubMedCrossRefGoogle Scholar
  35. 35.
    Jiang J., Nadas I.A., Kim A.M., Franz K.J. 2005. A mets motif peptide found in copper transport proteins selectively binds Cu(I) with methionine-only coordination. Inorg. Chem. 44, 9787–9794.PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang L., Koay M., Maher M.J., Xiao Z., Wedd A.G. 2006. Intermolecular transfer of copper ions from the CopC protein of Pseudomonas syringae: Crystal structures of fully loaded Cu(I)Cu(II) forms. J. Am. Chem. Soc. 128, 5834–5850.PubMedCrossRefGoogle Scholar
  37. 37.
    Haas K.L., Putterman A.B., White D.R., Thiele D.J., Franz K.J. 2011. Model peptides provide new insight into the role of histidine residues as potential ligands in human cellular copper acquision via Ctr1. J. Am. Chem. Soc. 133, 4427–4437.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhou B., Gitschier J. 1997. hCTR1: A human gene for copper uptake identified by complementation in yeast. Proc. Natl. Acad. Sci. U. S. A. 94, 7481–7486.PubMedCrossRefGoogle Scholar
  39. 39.
    Zatulovskiy E., Samsonov S., Skvortsov A. 2007. Docking study on mammalian CTR1 copper importer motifs. BMC Syst. Biol. 1(S1), P54.CrossRefGoogle Scholar
  40. 40.
    Linder M.C. 2001. Copper and genomic stability in mammals. Mutat. Res. 475, 141–152.PubMedCrossRefGoogle Scholar
  41. 41.
    Arnesano F., Scintilla S., Natile G. 2007. Interaction between platinum complexes and a methionine motif found in copper transport proteins. Angew. Chem. Int. Ed. Engl. 46, 9062–9064.PubMedCrossRefGoogle Scholar
  42. 42.
    Long F., Su C.C., Zimmermann M.T., Boyken S.E., Rajashankar K.R., Jernigan R.L., Yu E.W. 2010. Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport. Nature. 467, 484–488.PubMedCrossRefGoogle Scholar
  43. 43.
    Su C.C., Yang F., Long F., et al. 2009. Crystal structure of the membrane fusion protein CusB from Escherichia coli. J. Mol. Biol. 393, 342–355.PubMedCrossRefGoogle Scholar
  44. 44.
    Hahn M., Kleine M., Sheldrick W.S. 2001. Interaction of cisplatin with methionine- and histidine-containing peptides: Competition between backbone binding, macrochelation and peptide cleavage. J. Bioinorg. Chem. 6, 556–566.Google Scholar
  45. 45.
    Reedijk J. 1999. Why does cisplatin reach G-N7 with competing S-donor ligands available in the cell. Chem. Rev. 99, 2499–2510.PubMedCrossRefGoogle Scholar
  46. 46.
    Barnham K.J., Djuran M.I., Murdoch P.D.-S. Sadler P.J. 1994. Intermolecular displacement of S-bound L-methionine on platinum (II) by guanosine 5′-monophosphate. Implications for the mechanism of action of anticancer drugs. J. Chem. Soc. Chem. Commun. 721–722.Google Scholar
  47. 47.
    Dickerson R.E., Eisenberg D., Varnum J., Kopka M.L. 1969. PtCl4 2-: A methionine-specific label for protein crystallography. J. Mol. Biol. 45, 77–84.PubMedCrossRefGoogle Scholar
  48. 48.
    Ivanov A.I., Christodoulou J., Parkinson J.A., Barnham K.J., Tucker A., Woodrow J., Sadler P.J. 1998. Cisplatin binding sites on human albumin. J. Biol. Chem. 273, 14721–14730.PubMedCrossRefGoogle Scholar
  49. 49.
    Wei M., Cohen S.M., Silverman A.P., Lippard S.J. 2001. Effects of spectator ligands on the specific recognition of intrastrand platinum-DNA cross-links by high mobility group box and TATA-binding proteins. J. Biol. Chem. 276, 38774–38780.PubMedCrossRefGoogle Scholar
  50. 50.
    Wilkinson G., Gillard R.D., McCleverty J.A. 1989. Comprehensive Coordination Chemistry: The Synthesis, Reactions, Properties and Applications of Coordination Compounds. Oxford: Pergamon Press.Google Scholar
  51. 51.
    Sze C.M., Khairallah G.N., Xiao Z., Donnelly P.S., O’Hair R.A., Wedd A.G. 2009. Interaction of cisplatin and analogues with a Met-rich protein site. J. Biol. Inorg. Chem. 14, 163–165.PubMedCrossRefGoogle Scholar
  52. 52.
    Cheng C.-C., Pai C.-H. 1998. Specific displacement of glutathione from the Pt(II)-glutathione adduct by Cu(II) in neutral phosphate buffer. J. Inorg. Biochem. 71, 109–113.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. N. Skvortsov
    • 1
    • 2
  • E. A. Zatulovskiy
    • 1
  • L. V. Puchkova
    • 1
  1. 1.St. Petersburg State Polytechnical UniversitySt. PetersburgRussia
  2. 2.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations