Skip to main content
Log in

A review of recent experiments on step-to-step “hand-off” of the DNA intermediates in mammalian base excision repair pathways

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The current “working model” for mammalian base excision repair involves two sub-pathways termed single-nucleotide base excision repair and long patch base excision repair that are distinguished by their repair patch sizes and the enzymes/co-factors involved. These base excision repair sub-pathways are designed to sequester the various DNA intermediates, passing them along from one step to the next without allowing these toxic molecules to trigger cell cycle arrest, necrotic cell death, or apoptosis. Although a variety of DNA-protein and protein-protein interactions are known for the base excision repair intermediates and enzymes/co-factors, the molecular mechanisms accounting for step-to-step coordination are not well understood. In this review, we explore the question of whether there is an actual step-to-step “hand-off” of the DNA intermediates during base excision repair in vitro. The results show that when base excision repair enzymes are pre-bound to the initial single-nucleotide base excision repair intermediate, the DNA is channeled from apurinic/apyrimidinic endonuclease 1 to DNA polymerase β and then to DNA ligase. In the long patch base excision repair sub-pathway, where the 5′-end of the incised strand is blocked, the intermediate after polymerase β gap filling is not channeled from polymerase β to the subsequent enzyme, flap endonuclease 1. Instead, flap endonuclease 1 must recognize and bind to the intermediate in competition with other molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lindahl T. 1982. DNA repair enzymes. Annu. Rev. Biochem. 51, 61–87.

    Article  PubMed  CAS  Google Scholar 

  2. Lindahl T. 1993. Instability and decay of the primary structure of DNA. Nature. 362, 709–715.

    Article  PubMed  CAS  Google Scholar 

  3. Loeb L.A., Preston B.D. 1986. Mutagenesis by apurinic/apyrimidinic sites. Annu. Rev. Genet. 20, 201–230.

    Article  PubMed  CAS  Google Scholar 

  4. Drinkwater N.R., Miller E.C., Miller J.A. 1980. Estimation of apurinic/apyrimidinic sites and phosphotriesters in deoxyribonucleic acid treated with electrophilic carcinogens and mutagens. Biochemistry. 19, 5087–5092.

    Article  PubMed  CAS  Google Scholar 

  5. Nakamura J., Swenberg J.A. 1999. Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues. Cancer Res. 59, 2522–2526.

    PubMed  CAS  Google Scholar 

  6. Roberts K.P., Sobrino J.A., Payton J., Mason L.B., Turesky R.J. 2006. Determination of apurinic/apyrimidinic lesions in DNA with high-performance liquid chromatography and tandem mass spectrometry. Chem. Res. Toxicol. 19, 300–309.

    Article  PubMed  CAS  Google Scholar 

  7. Horton J.K., Prasad R., Hou E., Wilson S.H. 2000. Protection against methylation-induced cytotoxicity by DNA polymerase beta-dependent long patch base excision repair. J. Biol. Chem. 275, 2211–2218.

    Article  PubMed  CAS  Google Scholar 

  8. Ward J.E. 1998. DNA repair in higher eucaryotes. In: DNA Damage and Repair. Eds. Nivkoloff J.A., Hoekstra M.F. Totowa, NJ: Humana Press, pp. 65–84.

    Chapter  Google Scholar 

  9. Kubota Y., Nash R.A., Klungland A., Schar P., Barnes D.E., Lindahl T. 1996. Reconstitution of DNA base excisionrepair with purified human proteins: Interaction between DNA polymerase beta and the XRCC1 protein. EMBO J. 15, 6662–6670.

    PubMed  CAS  Google Scholar 

  10. Lindahl T., Wood R.D. 1999. Quality control by DNA repair. Science. 286, 1897–1905.

    Article  PubMed  CAS  Google Scholar 

  11. Wilson D.M., 3rd, Thompson L.H. 1997. Life without DNA repair. Proc. Natl. Acad. Sci. U. S. A. 94, 12754–12757.

    Article  PubMed  CAS  Google Scholar 

  12. Wilson S.H. 1998. Mammalian base excision repair and DNA polymerase beta. Mutat. Res. 407, 203–215.

    PubMed  CAS  Google Scholar 

  13. Frosina G., Fortini P., Rossi O., Carrozzino F., Raspaglio G., Cox L.S., Lane D.P., Abbondandolo A., Dogliotti E. 1996. Two pathways for base excision repair in mammalian cells. J. Biol. Chem. 271, 9573–9578.

    Article  PubMed  CAS  Google Scholar 

  14. Klungland A., Lindahl T. 1997. Second pathway for completion of human DNA base excision-repair: Reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J. 16, 3341–3348.

    Article  PubMed  CAS  Google Scholar 

  15. Fortini P., Pascucci B., Parlanti E., Sobol R.W., Wilson S.H., Dogliotti E. 1998. Different DNA polymerases are involved in the short- and long-patch base excision repair in mammalian cells. Biochemistry. 37, 3575–3580.

    Article  PubMed  CAS  Google Scholar 

  16. Biade S., Sobol R.W., Wilson S.H., Matsumoto Y. 1998. Impairment of proliferating cell nuclear antigen-dependent apurinic/apyrimidinic site repair on linear DNA. J. Biol. Chem. 273, 898–902.

    Article  PubMed  CAS  Google Scholar 

  17. Singhal R.K., Prasad R., Wilson S.H. 1995. DNA polymerase beta conducts the gap-filling step in uracil-initiated base excision repair in a bovine testis nuclear extract. J. Biol. Chem. 270, 949–957.

    Article  PubMed  CAS  Google Scholar 

  18. Dianov G., Price A., Lindahl T. 1992. Generation of single-nucleotide repair patches following excision of uracil residues from DNA. Mol. Cell. Biol. 12, 1605–1612.

    PubMed  CAS  Google Scholar 

  19. Mosbaugh D.W., Bennett S.E. 1994. Uracil-excision DNA repair. Prog. Nucl. Acids Res. Mol. Biol. 48, 315–370.

    Article  CAS  Google Scholar 

  20. Slupphaug G., Eftedal I., Kavli B., Bharati S., Helle N.M., Haug T., Levine D.W., Krokan H.E. 1995. Properties of a recombinant human uracil-DNA glycosylase from the UNG gene and evidence that UNG encodes the major uracil-DNA glycosylase. Biochemistry. 34, 128–138.

    Article  PubMed  CAS  Google Scholar 

  21. Doetsch P.W., Helland D.E., Haseltine W.A. 1986. Mechanism of action of a mammalian DNA repair endonuclease. Biochemistry. 25, 2212–2220.

    Article  PubMed  CAS  Google Scholar 

  22. Doetsch P.W., Cunningham R.P. 1990. The enzymology of apurinic/apyrimidinic endonucleases. Mutat. Res. 236, 173–201.

    PubMed  CAS  Google Scholar 

  23. Matsumoto Y., Kim K. 1995. Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair. Science. 269, 699–702.

    Article  PubMed  CAS  Google Scholar 

  24. Piersen C.E., Prasad R., Wilson S.H., Lloyd R.S. 1996. Evidence for an imino intermediate in the DNA polymerase beta deoxyribose phosphate excision reaction. J. Biol. Chem. 271, 17811–17815.

    Article  PubMed  CAS  Google Scholar 

  25. Casas-Finet J.R., Kumar A., Morris G., Wilson S.H., Karpel R.L. 1991. Spectroscopic studies of the structural domains of mammalian DNA beta-polymerase. J. Biol. Chem. 266, 19618–19625.

    PubMed  CAS  Google Scholar 

  26. Kumar A., Abbotts J., Karawya E.M., Wilson S.H. 1990. Identification and properties of the catalytic domain of mammalian DNA polymerase beta. Biochemistry. 29, 7156–7159.

    Article  PubMed  CAS  Google Scholar 

  27. Kumar A., Widen S.G., Williams K.R., Kedar P., Karpel R.L., Wilson S.H. 1990. Studies of the domain structure of mammalian DNA polymerase beta: Identification of a discrete template binding domain. J. Biol. Chem. 265, 2124–2131.

    PubMed  CAS  Google Scholar 

  28. Dianov G., Lindahl T. 1994. Reconstitution of the DNA base excision-repair pathway. Curr. Biol. 4, 1069–1076.

    Article  PubMed  CAS  Google Scholar 

  29. Sobol R.W., Horton J.K., Kuhn R., Gu H., Singhal R.K., Prasad R., Rajewsky K., Wilson S.H. 1996. Requirement of mammalian DNA polymerase-beta in base-excision repair. Nature. 379, 183–186.

    Article  PubMed  CAS  Google Scholar 

  30. Srivastava D.K., Berg B.J., Prasad R., Molina J.T., Beard W.A., Tomkinson A.E., Wilson S.H. 1998. Mammalian abasic site base excision repair: Identification of the reaction sequence and rate-determining steps. J. Biol. Chem. 273, 21203–21209.

    Article  PubMed  CAS  Google Scholar 

  31. Prasad R., Beard W.A., Strauss P.R., Wilson S.H. 1998. Human DNA polymerase beta deoxyribose phosphate lyase: Substrate specificity and catalytic mechanism. J. Biol. Chem. 273, 15263–15270.

    Article  PubMed  CAS  Google Scholar 

  32. Prasad R., Singhal R.K., Srivastava D.K., Molina J.T., Tomkinson A.E., Wilson S.H. 1996. Specific interaction of DNA polymerase beta and DNA ligase I in a multiprotein base excision repair complex from bovine testis. J. Biol. Chem. 271, 16000–16007.

    Article  PubMed  CAS  Google Scholar 

  33. Prigent C., Satoh M.S., Daly G., Barnes D.E., Lindahl T. 1994. Aberrant DNA repair and DNA replication due to an inherited enzymatic defect in human DNA ligase I. Mol. Cell. Biol. 14, 310–317.

    PubMed  CAS  Google Scholar 

  34. Caldecott K.W., McKeown C.K., Tucker J.D., Ljungquist S., Thompson L.H. 1994. An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III. Mol. Cell. Biol. 14, 68–76.

    PubMed  CAS  Google Scholar 

  35. Mol C.D., Izumi T., Mitra S., Tainer J.A. 2000. DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination [corrected]. Nature. 403, 451–456.

    Article  PubMed  CAS  Google Scholar 

  36. Parikh S.S., Mol C.D., Hosfield D.J., Tainer J.A. 1999. Envisioning the molecular choreography of DNA base excision repair. Curr. Opin. Struct. Biol. 9, 37–47.

    Article  PubMed  CAS  Google Scholar 

  37. Wilson S.H., Kunkel T.A. 2000. Passing the baton in base excision repair. Nature Struct. Biol. 7, 176–178.

    Article  PubMed  CAS  Google Scholar 

  38. Prasad R., Shock D.D., Beard W.A., Wilson S.H. Substrate channeling in mammalian base excision repair pathways: Passing the baton. J. Biol. Chem. 285, 40479–40488.

  39. Liu Y., Beard W.A., Shock D.D., Prasad R., Hou E.W., Wilson S.H. 2005. DNA polymerase beta and flap endonuclease 1 enzymatic specificities sustain DNA synthesis for long patch base excision repair. J. Biol. Chem. 280, 3665–3674.

    Article  PubMed  CAS  Google Scholar 

  40. Prasad R., Batra V.K., Yang X.P., Krahn J.M., Pedersen L.C., Beard W.A., Wilson S.H. 2005. Structural insight into the DNA polymerase beta deoxyribose phosphate lyase mechanism. DNA Repair (Amst.). 4, 1347–1357.

    Article  CAS  Google Scholar 

  41. Sawaya M.R., Prasad R., Wilson S.H., Kraut J., Pelletier H. 1997. Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: Evidence for an induced fit mechanism. Biochemistry. 36, 11205–11215.

    Article  PubMed  CAS  Google Scholar 

  42. Deterding L.J., Prasad R., Mullen G.P., Wilson S.H., Tomer K.B. 2000. Mapping of the 5′-2-deoxyribose-5-phosphate lyase active site in DNA polymerase beta by mass spectrometry. J. Biol. Chem. 275, 10463–10471.

    Article  PubMed  CAS  Google Scholar 

  43. Liu Y., Prasad R., Beard W.A., Kedar P.S., Hou E.W., Shock D.D., Wilson S.H. 2007. Coordination of steps in single-nucleotide base excision repair mediated by apurinic/apyrimidinic endonuclease 1 and DNA polymerase beta. J. Biol. Chem. 282, 13532–13541.

    Article  PubMed  CAS  Google Scholar 

  44. Wong D., Demple B. 2004. Modulation of the 5′-deoxyribose-5-phosphate lyase and DNA synthesis activities of mammalian DNA polymerase beta by apurinic/apyrimidinic endonuclease 1. J. Biol. Chem. 279, 25268–25275.

    Article  PubMed  CAS  Google Scholar 

  45. Tomkinson A.E., Chen L., Dong Z., Leppard J.B., Levin D.S., Mackey Z.B., Motycka T.A. 2001. Completion of base excision repair by mammalian DNA ligases. Prog. Nucl. Acids Res. Mol. Biol. 68, 151–164.

    Article  CAS  Google Scholar 

  46. Lavrik O.I., Prasad R., Sobol R.W., Horton J.K., Ackerman E.J., Wilson S.H. 2001. Photoaffinity labeling of mouse fibroblast enzymes by a base excision repair intermediate: Evidence for the role of poly(ADP-ribose) polymerase-1 in DNA repair. J. Biol. Chem. 276, 25541–25548.

    Article  PubMed  CAS  Google Scholar 

  47. Zolghadr K., Mortusewicz O., Rothbauer U., Kleinhans R., Goehler H., Wanker E.E., Cardoso M.C., Leonhardt H. 2008. A fluorescent two-hybrid assay for direct visualization of protein interactions in living cells. Mol. Cell. Proteomics. 7, 2279–2287.

    Article  PubMed  CAS  Google Scholar 

  48. Lan L., Nakajima S., Oohata Y., Takao M., Okano S., Masutani M., Wilson S.H., Yasui A. 2004. In situ analysis of repair processes for oxidative DNA damage in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 101, 13 738–13743.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Wilson.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, R., Beard, W.A., Batra, V.K. et al. A review of recent experiments on step-to-step “hand-off” of the DNA intermediates in mammalian base excision repair pathways. Mol Biol 45, 536–550 (2011). https://doi.org/10.1134/S0026893311040091

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893311040091

Keywords

Navigation