Skip to main content
Log in

Regulation of multidrug resistance genes by transcription factors of the BltR subfamily

  • Bioinformatics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

BltR protein is a MerR family transcription factor experimentally characterized in Bacillus subtilis. It activates the transcription of genes encoding the multidrug transporter Blt and spermine/spermidine acetyltransferase BltD. Comparative genomics methods were applied to BltR-dependent regulons in 25 bacterial genomes. The structure of the promoter regions of the regulated genes is typical of MerR family activators: their binding sites are located in long spacers between promoter boxes. The regulated genes usually form divergons with the regulator genes. The transcription factors under consideration regulate the transcription of multidrug transporter and spermine/spermidine acetyltransferase genes. These transporters can be either secondary or ATP-dependent. The conservative function of both types as multidrug transporters is confirmed by phylogenetic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MDR:

multiple drug resistance

ABC:

ATP Binding Cassette

MATE:

Multidrug and Toxic Compound Extrusion

MFS:

Major Facilitator Superfamily

References

  1. Grkovic S., Brown M.H., Skurray R.A. 2002. Regulation of bacterial drug export systems. Microbiol. Mol. Biol. Rev. 66, 671–701

    Article  PubMed  CAS  Google Scholar 

  2. Neyfakh A.A., Bidnenko V.E., Chen L.B. 1991. Efflux-mediated multidrug resistance in Bacillus subtilis: Similarities and dissimilarities with the mammalian system. Proc. Natl. Acad. Sci. U. S. A. 88, 4781–4785.

    Article  PubMed  CAS  Google Scholar 

  3. Neyfakh A.A. 1992. The multidrug efflux transporter of Bacillus subtilis is a structural and functional homolog of the Staphylococcus NorA protein. Antimicrob. Agents Chemother. 37, 484–485.

    Google Scholar 

  4. Ahmed M., Lyass L., Markham P.N., Taylor S.S., Vazquez-Laslop N., Neyfakh A.A. 1995. Two highly similar multidrug transporters of Bacillus subtilis whose expression is differentially regulated. J. Bacteriol. 177, 3904–3910.

    PubMed  CAS  Google Scholar 

  5. Ahmed M., Borsch C.M., Taylor S.S., Vazquez-Laslop N., Neyfakh A.A. 1994 A protein that activates expression of a multidrug efflux transporter upon binding the transporter substrates. J. Biol. Chem. 269, 28506–28513.

    PubMed  CAS  Google Scholar 

  6. Woolridge D.P., Martinez J.D., Stringer D.E., Gerner E.W. 1999. Characterization of a novel spermidine/spermine acetyltransferase, BltD, from Bacillus subtilis. Biochem J. 340, 753–758.

    Article  PubMed  CAS  Google Scholar 

  7. Woolridge D.P., Vazquez-Laslop N., Markham P.N., Chevalier M.S., Gerner E.W., Neyfakh A.A. 1997. Efflux of the natural polyamine spermidine facilitated by the Bacillus subtilis multidrug transporter Blt. J. Biol. Chem. 272, 8864–8866.

    Article  PubMed  CAS  Google Scholar 

  8. Zheleznova-Heldwein E.E., Brennan R.G. 2001. Crystal structure of the transcription activator BmrR bound to DNA and a drug. Nature. 409, 378–382.

    Article  Google Scholar 

  9. Newberry K.J., Brennan R.G. 2004. The structural mechanism for transcription activation by MerR family member multidrug transporter activation, N terminus. J. Biol. Chem. 279, 20356–20362.

    Article  PubMed  CAS  Google Scholar 

  10. Changela A., Chen K., Xue Y., Holschen J., Outten C.E., O’Halloran T.V., Mondragon A. 2003. Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science. 301, 1383–1387.

    Article  PubMed  CAS  Google Scholar 

  11. Watanabe S., Kita A., Kobayashi K., Miki K. 2008. Crystal structure of the [2Fe-2S] oxidative-stress sensor SoxR bound to DNA. Proc. Natl. Acad. Sci. U. S. A. 105, 4121–4126.

    Article  PubMed  CAS  Google Scholar 

  12. Helmann J.D., Moran C.P. 2002. RNA polymerases and sigma factors. In: Bacillus subtilis and Its Closest Relatives: From Genes to Cells. Eds. Sonenshein A.L., Hoch J.A., Losick R. Washington, D.C.: ASM Press, pp. 289–312.

    Google Scholar 

  13. Mironov A.A., Koonin E.V., Roytberg M.A., Gelfand M.S. 1999. Computer analysis of transcription regulatory patterns in completely sequenced bacterial genomes. Nucleic Acids Res. 27, 2981–2989.

    Article  PubMed  CAS  Google Scholar 

  14. Gralla J.D., Collado-Vides J. 1996. Organization and function of transcription regulatory elements. In: Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. Eds. Neidhardt F.C., Curtiss R., Ingraham J.L., Lin E.C.C., Low K.B., Magasanik B., Reznikoff W., Riley M., Schaechter M., Umbarger H.E. Washington, D.C.: ASM Press, pp. 1232–1245.

    Google Scholar 

  15. Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J., Wheeler D.L. 2008. GenBank. Nucleic Acids Res. 36, D25–D30.

    Article  PubMed  CAS  Google Scholar 

  16. Baranova N.N., Danchin A., Neyfakh A.A. 1999. Mta, a global MerR-type regulator of the Bacillus subtilis multidrug-efflux transporters. Mol. Microbiol. 31, 1549–1559.

    Article  PubMed  CAS  Google Scholar 

  17. Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  18. Edgar R.C. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.

    Article  PubMed  CAS  Google Scholar 

  19. Felsenstein J. 1989. PHYLIP: Phylogeny inference package (version 3.2). Cladistics. 5, 164–166.

    Google Scholar 

  20. Mironov A.A., Vinokurova N.P., Gelfand M.S. 2000. Software for analysis of bacterial genomes. Mol. Biol. (Moscow). 34, 222–231.

    Article  CAS  Google Scholar 

  21. Snyder L., Champness W. 1997. Molecular Genetics of Bacteria. Washington, D.C.: ASM Press.

    Google Scholar 

  22. Dridi L., Tankovic J., Petit J.C. 2004. CdeA of Clostridium difficile, a new multidrug efflux transporter of the MATE family. Microb. Drug Resist. 10, 191–196.

    PubMed  CAS  Google Scholar 

  23. Kuroda T., Tsuchiya T. 2009. Multidrug efflux transporters in the MATE family. Biochim. Biophys. Acta. 1794, 763–768.

    PubMed  CAS  Google Scholar 

  24. Chen J., Morita Y., Huda M.N., Kuroda T., Mizushima T., Tsuchiya T. 2002. VmrA, a member of a novel class of Na(+)-coupled multidrug efflux pumps from Vibrio parahaemolyticus. J. Bacteriol. 184, 572–576.

    Article  PubMed  CAS  Google Scholar 

  25. McAleese F., Petersen P., Ruzin A., Dunman P.M., Murphy E., Projan S.J., Bradford P.A. 2005. A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline. Antimicrob. Agents Chemother. 49, 1865–1871.

    Article  PubMed  CAS  Google Scholar 

  26. Kaatz G.W., McAleese F., Seo S.M. 2005. Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrob. Agents Chemother. 49, 1857–1864.

    Article  PubMed  CAS  Google Scholar 

  27. Lubelski J., Mazurkiewicz P., van Merkerk R., Konings W.N., Driessen A.J.M. 2004. ydaG and ydbA of Lactococcus lactis encode a heterodimeric ATP-binding cassette-type multidrug transporter. J. Biol. Chem. 279, 34449–34455.

    Article  PubMed  CAS  Google Scholar 

  28. Lubelski J., de Jong A., van Merkerk R., Agustiandari H., Kuipers O.P., Kok J., Driessen A.J.M. 2006. LmrCD is a major multidrug resistance transporter in Lactococcus lactis. Mol. Microbiol. 61, 771–781.

    Article  PubMed  CAS  Google Scholar 

  29. Dalton T.L., Collins J.T., Barnett T.C., Scott J.R. 2006. RscA, a member of the MDR1 family of transporters, is repressed by CovR and required for growth of Streptococcus pyogenes under heat stress. J. Bacteriol. 188, 77–85.

    Article  PubMed  CAS  Google Scholar 

  30. Tabor C.W, Tabor H. 1985. Polyamines in microorganisms. Microbiol. Rev. 49. 81–99.

    PubMed  CAS  Google Scholar 

  31. Carper S.W., Willis D.G., Manning K.A., Gerner E.W. 1991. Spermidine acetylation in response to a variety of stresses in Escherichia coli. J. Biol. Chem. 266, 12439–12441.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Zharov.

Additional information

Original Russian Text © I.A. Zharov, M.S. Gelfand, A.E. Kazakov, 2011, published in Molekulyarnaya Biologiya, 2011, Vol. 45, No. 4, pp. 715–723.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zharov, I.A., Gelfand, M.S. & Kazakov, A.E. Regulation of multidrug resistance genes by transcription factors of the BltR subfamily. Mol Biol 45, 658–666 (2011). https://doi.org/10.1134/S002689331103023X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689331103023X

Keywords

Navigation