Skip to main content
Log in

Patterns of histone modifications across the chicken alfa-globin genes’ domain

  • Molecular Biology of the Cell
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Using native chromatin imunoprecipitation (N-ChIP) followed by TaqMan RT-PCR quantitative analysis, we have determined the profiles of histone acetylation and histone methylation within the α-globin gene domain before and after switching of embryonic globin gene expression. The results obtained do not support a supposition that the inactivation of the embryonic α-type globin gene π in the erythroid cells of the adult lineage is mediated via formation of an inactive chromatin domain. On the other hand, we have demonstrated that suppression of the gene π activity in erythroid cells of adult lineage correlates with decrease of the histone acetylation level within the embryonic subdomain of the α-globin gene domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peterson K.R. 2003. Hemoglobin switching: New insights. Curr. Opin. Hematol. 10, 123–129.

    Article  PubMed  CAS  Google Scholar 

  2. Orkin S.H. 1995. Regulation of globin gene expression in erythroid cells. Eur. J. Biochem. 231, 271–281.

    Article  PubMed  CAS  Google Scholar 

  3. Yin W., Barkess G., Fang X., Xiang P., Cao H., Stamatoyannopoulos G., Li Q. 2007. Histone acetylation at the human beta-globin locus changes with developmental age. Blood. 110, 4101–4107.

    Article  PubMed  CAS  Google Scholar 

  4. Stamatoyannopoulos G. 2005. Control of globin gene expression during development and erythroid differentiation. Exp. Hematol. 33, 259–271.

    Article  PubMed  CAS  Google Scholar 

  5. Li Q., Peterson K.R., Stamatoyannopoulos G. 1998. Developmental control of epsilon- and gamma-globin genes. Ann. N.Y. Acad. Sci. 850, 10–17.

    Article  PubMed  CAS  Google Scholar 

  6. Mabaera R., Richardson C.A., Johnson K., Hsu M., Fiering S., Lowrey C.H. 2007. Developmental- and differentiation-specific patterns of human gamma- and beta-globin promoter DNA methylation. Blood. 110, 1343–1352.

    Article  PubMed  CAS  Google Scholar 

  7. Palstra R.J., de Laat W., Grosveld F. 2008. Beta-globin regulation and long-range interactions. Adv. Genet. 61, 107–142.

    Article  PubMed  CAS  Google Scholar 

  8. Palstra R.J., Tolhuis B., Splinter E., Nijmeijer R., Grosveld F., de Laat W. 2003. The beta-globin nuclear compartment in development and erythroid differentiation. Nature Genet. 35, 190–194.

    Article  PubMed  CAS  Google Scholar 

  9. de Laat W., Klous P., Kooren J., Noordermeer D., Palstra R.J., Simonis M., Splinter E., Grosveld F. 2008. Three-dimensional organization of gene expression in erythroid cells. Curr. Top. Dev. Biol. 82, 117–139.

    Article  PubMed  Google Scholar 

  10. Higgs D.R., Wood W.G., Jarman A.P., Sharpe J., Lida J., Pretorius I.-M., Ayyub H. 1990. A major positive regulatory region located far upstream of the human α-globin gene locus. Genes Dev. 4, 1588–1601.

    Article  PubMed  CAS  Google Scholar 

  11. Jarman A.P., Wood W.G., Sharpe J.A., Gourdon G., Ayyub H., Higgs D.R. 1991. Characterization of the major regulatory element upstream of the human α-globin gene cluster. Mol. Cell. Biol. 11, 4679–4689.

    PubMed  CAS  Google Scholar 

  12. Sharpe J.A., Chan-Thomas P.S., Lida J., Ayyub H., Wood W.G., Higgs D.R. 1992. Analysis of the human alpha globin upstream regulatory element (HS-40) in transgenic mice. EMBO J. 11, 4565–4572.

    PubMed  CAS  Google Scholar 

  13. Flint J., Tufarelli C., Peden J., Clark K., Daniels R.J., Hardison R., Miller W., Philipsen S., Tan-Un K.C., McMorrow T., Frampton J., Alter B.P., Frischauf A.M., Higgs D.R. 2001. Comparative genome analysis delimits a chromosomal domain and identifies key regulatory elements in the alpha globin cluster. Hum. Mol. Genet. 10, 371–382.

    Article  PubMed  CAS  Google Scholar 

  14. Dillon N., Sabbatini P. 2000. Functional gene expression domains: Defining the functional units of eukaryotic gene regulation. BioEssays. 22, 657–665.

    Article  PubMed  CAS  Google Scholar 

  15. Razin S.V., Farrell C.M., Recillas-Targa F. 2003. Genomic domains and regulatory elements operating at the domain level. Int. Rev. Cytol. 226, 63–125.

    Article  PubMed  CAS  Google Scholar 

  16. Razin S.V., Ioudinkova E.S. 2007. Mechanisms controlling activation of the alpha-globin gene domain in chicken erythroid cells. Biochemistry (Moscow). 72, 467–470.

    PubMed  CAS  Google Scholar 

  17. Recillas-Targa F., Razin S.V. 2001. Chromatin domains and regulation of gene expression: Familiar and enigmatic clusters of chicken globin genes. Crit. Rev. Eukaryot. Gene Expr. 11, 227–242.

    PubMed  CAS  Google Scholar 

  18. Bruns G.A., Ingram V.M. 1973. Erythropoiesis in the developing chick embryo. Dev. Biol. 30, 455–459.

    Article  PubMed  CAS  Google Scholar 

  19. Knezetic J., Felsenfeld G. 1989. Identification and characterization of a chicken α-globin enhancer. Mol. Cell. Biol. 9, 893–901.

    PubMed  CAS  Google Scholar 

  20. Chapman B.S., Tobin A.J. 1979. Distribution of developmentally regulated hemoglobins in embryonic erythroid populations. Dev. Biol. 69, 375–387.

    Article  PubMed  CAS  Google Scholar 

  21. Weintraub H., Larsen A., Groudine M. 1981. Alphaglobin gene switching during the development of chicken embryos: Expression and chromosome structure. Cell. 24, 333–344.

    Article  PubMed  CAS  Google Scholar 

  22. Landes G.M., Villeponteau B., Pribyl T.M., Martinson H.G. 1982. Hemoglobin switching in chickens. Is the switch initiated post-transcriptionally? J. Biol. Chem. 257, 11008–11014.

    PubMed  CAS  Google Scholar 

  23. Rincon-Arano H., Guerrero G., Valdes-Quezada C., Recillas-Targa F. 2009. Chicken alpha-globin switching depends on autonomous silencing of the embryonic pi globin gene by epigenetics mechanisms. J. Cell Biochem. 108, 675–687.

    Article  PubMed  CAS  Google Scholar 

  24. Klochkov D., Rincon-Arano H., Ioudinkova E.S., Valadez-Graham V., Gavrilov A., Recillas-Targa F., Razin S.V. 2006. A CTCF-dependent silencer located in the differentially methylated area may regulate expression of a housekeeping gene overlapping a tissue-specific gene domain. Mol. Cell Biol. 26, 1589–1597.

    Article  PubMed  CAS  Google Scholar 

  25. Bernstein E., Hake S.B. 2006. The nucleosome: A little variation goes a long way. Biochem. Cell Biol. 84, 505–517.

    Article  PubMed  CAS  Google Scholar 

  26. Wang Y., Fischle W., Cheung W., Jacobs S., Khorasanizadeh S., Allis C.D. 2004. Beyond the double helix: Writing and reading the histone code. Novartis Found Symp. 259, 3–17; discussion 17–21, 163–169.

    Article  PubMed  CAS  Google Scholar 

  27. Cosgrove M.S., Wolberger C. 2005. How does the histone code work? Biochem. Cell Biol. 83, 468–476.

    Article  PubMed  CAS  Google Scholar 

  28. Nakayama J., Rice J.C., Strahl B.D., Allis C.D., Grewal S.I. 2001. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science. 292, 110–113.

    Article  PubMed  CAS  Google Scholar 

  29. Prioleau M.N., Nony P., Simpson M., Felsenfeld G. 1999. An insulator element and condensed chromatin region separate the chicken beta-globin locus from an independently regulated erythroid-specific folate receptor gene. EMBO J. 18, 4035–4048.

    Article  PubMed  CAS  Google Scholar 

  30. Ghirlando R., Litt M.D., Prioleau M.N., Recillas-Targa F., Felsenfeld G. 2004. Physical properties of a genomic condensed chromatin fragment. J. Mol. Biol. 336, 597–605.

    Article  PubMed  CAS  Google Scholar 

  31. Litt M.D., Simpson M., Gaszner M., Allis C.D., Felsenfeld G. 2001. Correlation between histone lysine methylation and developmental changes at the chicken beta-globin locus. Science. 293, 2453–2455.

    Article  PubMed  CAS  Google Scholar 

  32. Litt M.D., Simpson M., Recillas-Targa F., Prioleau M.N., Felsenfeld G. 2001. Transitions in histone acetylation reveal boundaries of three separately regulated neighboring loci. EMBO J. 20, 2224–2235.

    Article  PubMed  CAS  Google Scholar 

  33. Haigh L.S., Owens B.B., Hellewel O.S., Ingram V.M. 1982. DNA methylation in chicken alpha-globin gene expression. Proc. Natl. Acad. Sci. U. S. A. 79, 5332–5336.

    Article  PubMed  CAS  Google Scholar 

  34. Singal R., vanWert J.M., Ferdinand L., Jr. 2002. Methylation of alpha-type embryonic globin gene alpha pi represses transcription in primary erythroid cells. Blood. 100, 4217–4222.

    Article  PubMed  CAS  Google Scholar 

  35. Ballestar E., Wolffe A.P. 2001. Methyl-CpG-binding proteins: Targeting specific gene repression. Eur. J. Biochem. 268, 1–6.

    Article  PubMed  CAS  Google Scholar 

  36. Wade P.A. 2001. Methyl CpG-binding proteins and transcriptional repression. Bioessays. 23, 1131–1137.

    Article  PubMed  CAS  Google Scholar 

  37. Gavrilov A.A., Razin S.V. 2008. Spatial configuration of the chicken α-globin gene domain: immature and active chromatin hubs. Nucleic Acids Res. 36, 4629–4640.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Yudinkova.

Additional information

Original Russian Text © E.S. Yudinkova, D.A. Bunina, S.V. Ulyanov, A.A. Gavrilov, S.V. Razin, 2011, published in Molekulyarnaya Biologiya, 2011, Vol. 45, No. 4, pp. 662–667.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yudinkova, E.S., Bunina, D.A., Ulyanov, S.V. et al. Patterns of histone modifications across the chicken alfa-globin genes’ domain. Mol Biol 45, 608–613 (2011). https://doi.org/10.1134/S0026893311030216

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893311030216

Keywords

Navigation