Skip to main content
Log in

Escherichia coli Dam-methylase as a molecular tool for mapping binding sites of the yeast transcription factor Rpn4

  • Molecular Biology of the Cell
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Rpn4p is a transcription factor responsible for coordinated regulation of proteasomal genes in Saccharomyces cerevisiae. There are data suggesting an involvement of this factor in regulation of many other genes that comprise more than one tenth part of the yeast genome. Traditional methods are inapplicable for mapping of Rpn4p binding sites because of their extremely low level. We have developed a model system using Dam-methylase of E. coli which allows us to detect interaction of Rpn4p with its target genes. In this system, we have shown that Rpn4p is recruited to proteasomal genes only through interactions with DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PACE:

Proteasome-Associated Control Element

MACE:

MAG1-Associated Control Element

DamID:

Dam identification method

References

  1. Mannhaupt G., Schnall R., Karpov V., Vetter I., Feldmann H. 1999. Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Lett. 450, 27–34.

    Article  PubMed  CAS  Google Scholar 

  2. Kapranov A.B., Kuryatova M.V., Preobrazhenskaya O.V., Tutyaeva V.V., Stucka R., Feldmann H., Karpov V.L. 2001. Isolation and identification of PACE-binding protein Rpn4, a new transcriptional activator regulating 26S-proteasomal and other genes. Mol. Biol. (Moscow). 35, 356–364.

    Article  CAS  Google Scholar 

  3. Xie Y., Varshavsky A. 2001. RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: A negative feedback circuit. Proc. Natl. Acad. Sci. U. S. A. 98, 3056–3061.

    Article  PubMed  CAS  Google Scholar 

  4. Gasch A.P., Moses A.M., Chiang D.Y., Fraser H.B., Berardini M., Eisen M.B. 2004. Conservation and evolution of cis-regulatory systems in ascomycete fungi. PLoS Biol. 2, e398.

    Article  PubMed  Google Scholar 

  5. Karpov D.S., Preobrazhenskaya O.V., Karpov V.L. 2009. Expression regulation of the proteasomal genes in eukaryotes. Mol. Biol. (Moscow). 43, 223–232.

    Article  CAS  Google Scholar 

  6. Jelinsky S.A., Estep P., Church G.M., Samson L.D. 2000. Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes. Mol. Cell. Biol. 20, 8157–8167.

    Article  PubMed  CAS  Google Scholar 

  7. Owsianik G., Balzil L., Ghislain M. 2002. Control of 26S proteasome expression by transcription factors regulating multidrug resistance in Saccharomyces cerevisiae. Mol. Microbiol. 43, 1295–1308.

    Article  PubMed  CAS  Google Scholar 

  8. Hahn J.S., Neef D.W., Thiele D.J. 2006. A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor. Mol. Microbiol. 60, 240–251.

    Article  PubMed  CAS  Google Scholar 

  9. Teixeira M.C., Dias P.J., Simoes T., Sa-Correia I. 2008. Yeast adaptation to mancozeb involves the up-regulation of FLR1 under the coordinate control of Yap1, Rpn4, Pdr3, and Yrr1. Biochem. Biophys. Res. Commun. 367, 249–255.

    Article  PubMed  CAS  Google Scholar 

  10. Harbison C.T., Gordon D.B., Lee T.I., Rinaldi N.J., Macisaac K.D., Danford T.W., Hannett N.M., Tagne J.B., Reynolds D.B., Yoo J., Jennings E.G., Zeitlinger J., Pokholok D.K., Kellis M., Rolfe P.A., Tak U.S., Agawa K.T., Lander E.S., Gifford D.K., Fraenkel E., Young R.A. 2004. Transcriptional regulatory code of a eukaryotic genome. Nature. 431, 99–104.

    Article  PubMed  CAS  Google Scholar 

  11. Zhu C., Byers K.J., McCord R.P., Shi Z., Berger M.F., Newburger D.E., Saulrieta K., Smith Z., Shah M.V., Radhakrishnan M., Philippakis A.A., Hu Y., De Masi F., Pacek M., Rolfs A., Murthy T., Labaer J., Bulyk M.L. 2009. High-resolution DNA-binding specificity analysis of yeast transcription factors. Genome Res. 19, 556–566.

    Article  PubMed  CAS  Google Scholar 

  12. Ju D., Wang X., Ha S.W., Fu J., Xie Y. 2010. Inhibition of proteasomal degradation of rpn4 impairs nonhomologous end-joining repair of DNA double-strand breaks. PLoS One. 5, e9877.

    Article  PubMed  Google Scholar 

  13. van Steensel B., Henikoff S. 2000. Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nature Biotechnol. 18, 424–428.

    Article  Google Scholar 

  14. Orian A., van Steensel B., Delrow J., Bussemaker H.J., Li L., Sawado T., Williams E., Loo L.W., Cowley S.M., Yost C., Pierce S., Edgar B.A., Parkhurst S.M., Eisenman R.N. 2003. Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev. 17, 1101–1114.

    Article  PubMed  CAS  Google Scholar 

  15. Bianchi-Frias D., Orian A., Delrow J.J., Vazquez J., Rosales-Nieves A.E., Parkhurst S.M. 2004. Hairy transcriptional repression targets and cofactor recruitment in Drosophila. PLoS Biol. 2, E178.

    Article  PubMed  Google Scholar 

  16. Song S., Cooperman J., Letting D.L., Blobel G.A., Choi J.K. 2004. Identification of cyclin D3 as a direct target of E2A using DamID. Mol. Cell Biol. 24, 8790–8802.

    Article  PubMed  CAS  Google Scholar 

  17. Holland S., Ioannou D., Haines S., Brown W.R. 2005. Comparison of Dam tagging and chromatin immunoprecipitation as tools for the identification of the binding sites for S. pombe CENP-C. Chromosome Res. 13, 73–83.

    Article  PubMed  CAS  Google Scholar 

  18. Lebrun E., Fourel G., Defossez P.A., Gilson E. 2003. A methyltransferase targeting assay reveals silencertelomere interactions in budding yeast. Mol. Cell Biol. 23, 1498–1508.

    Article  PubMed  CAS  Google Scholar 

  19. Venkatasubrahmanyam S., Hwang W.W., Meneghini M.D., Tong A.H., Madhani H.D. 2007. Genome-wide, as opposed to local, antisilencing is mediated redundantly by the euchromatic factors Set1 and H2A.Z. Proc. Natl. Acad. Sci. U. S. A. 104, 16609–16614.

    Article  PubMed  CAS  Google Scholar 

  20. Gietz D., St Jean A., Woods R.A., Schiestl R.H. 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20, 1425.

    Article  PubMed  CAS  Google Scholar 

  21. Ju D., Wang L., Mao X., Xie Y. 2004. Homeostatic regulation of the proteasome via an Rpn4-dependent feedback circuit. Biochem. Biophys. Res. Commun. 321, 51–57.

    Article  PubMed  CAS  Google Scholar 

  22. Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Smith J.A., Seidman J.G., Struhl K. 1998. Current Protocols in Molecular Biology. NY: Wiley.

    Google Scholar 

  23. Christianson T.W., Sikorski R.S., Dante M., Shero J.H., Hieter P. 1992. Multifunctional yeast high-copy-number shuttle vectors. Gene. 110, 119–122.

    Article  PubMed  CAS  Google Scholar 

  24. Gietz R.D., Sugino A. 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene. 74, 527–534.

    Article  PubMed  CAS  Google Scholar 

  25. Greil F., Moorman C., van Steensel B. 2006. DamID: Mapping of in vivo protein-genome interactions using tethered DNA adenine methyltransferase. Methods Enzymol. 410, 342–359.

    Article  PubMed  CAS  Google Scholar 

  26. Hoekstra M.F., Malone R.E. 1986. Excision repair functions in Saccharomyces cerevisiae recognize and repair methylation of adenine by the Escherichia coli dam gene. Mol. Cell Biol. 6, 3555–3558.

    PubMed  CAS  Google Scholar 

  27. London M.K., Keck B.I., Ramos P.C., Dohmen R.J. 2004. Regulatory mechanisms controlling biogenesis of ubiquitin and the proteasome. FEBS Lett. 567, 259–264.

    Article  PubMed  CAS  Google Scholar 

  28. Karpov D.S., Osipov S.A., Preobrazhenskaya O.V., Karpov V.L. 2008. Rpn4p is a positive and negative transcriptional regulator of the ubiquitin-proteasome system. Mol. Biol. (Moscow). 42, 456–463.

    Article  CAS  Google Scholar 

  29. Kladde M.P., Simpson R.T. 1994. Positioned nucleosomes inhibit Dam methylation in vivo. Proc. Natl. Acad. Sci. U. S. A. 91, 1361–1365.

    Article  PubMed  CAS  Google Scholar 

  30. Singh J., Klar A.J. 1992. Active genes in budding yeast display enhanced in vivo accessibility to foreign DNA methylases: A novel in vivo probe for chromatin structure of yeast. Genes Dev. 6, 186–196.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Spasskaya.

Additional information

Original Russian Text © D.S. Spasskaya, D.S. Karpov, V.L. Karpov, 2011, published in Molekulyarnaya Biologiya, 2011, Vol. 45, No. 4, pp. 642–651.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spasskaya, D.S., Karpov, D.S. & Karpov, V.L. Escherichia coli Dam-methylase as a molecular tool for mapping binding sites of the yeast transcription factor Rpn4. Mol Biol 45, 591–599 (2011). https://doi.org/10.1134/S0026893311030186

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893311030186

Keywords

Navigation