Skip to main content
Log in

Structure of DNA complexes with chromosomal protein HMGB1 and histone H1 in the presence of manganese ions: 1. Circular dichroism spectroscopy

  • Structure-Function Analysis of Biopolymers and Their Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Mechanisms of interaction of DNA with nonhistone chromosomal protein HMGB1 and linker histone H1 have been studied by means of circular dichroism and absorption spectroscopy. Both proteins are located in the internucleosomal regions of chromatin. It is demonstrated that the properties of DNA-protein complexes depend on the protein content and cannot be considered as a mere summing up of the effects of individual protein components. Interaction of the HMGB1 and H1 proteins is shown with DNA to be cooperative rather than competitive. Lysine-rich histone H1 facilitates the binding of HMGB1 to DNA by screening the negatively charged groups of the sugar-phosphate backbone of DNA and dicarboxylic amino acid residues in the C-terminal domain of HMGB1. The observed joint action of HMGB1 and H1 stimulates DNA condensation with the formation of anisotropic DNA-protein complexes with typical ψ-type CD spectra. Structural organization of the complexes depends not only on DNA-protein interactions but also on interaction between the HMGB1 and H1 protein molecules bound to DNA. Manganese ions significantly modify the mode of interactions between components in the triple DNA-HMGB1-H1 complex. The binding of Mn2+ ions weakens DNA-protein interactions and strengthens protein-protein interactions, which promote DNA condensation and formation of large DNA-protein particles in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reeck G.R., Isackson P.J., Teller D.C. 1982. Domain structure in high molecular weight high mobility group nonhistone chromatin proteins. Nature. 300, 76–78.

    Article  PubMed  CAS  Google Scholar 

  2. Grosschedl R. 1995. Higher-order nucleoprotein complexes in transcription: Analogies with site-specific recombination. Curr. Opin. Cell Biol. 7, 362–370.

    Article  PubMed  CAS  Google Scholar 

  3. Crothers D.M. 1993. Architectural elements in nucleoprotein complexes. Curr. Biol. 3, 675–676.

    Article  PubMed  CAS  Google Scholar 

  4. Thomas J.O., Travers A.A. 2001. HMG1 and 2, and related “architectural’ DNA-binding proteins. Trends Biochem. Sci. 26, 167–174

    Article  PubMed  CAS  Google Scholar 

  5. Thomas J.O. 1999. Histone H1: Location and role. Curr. Opin. Cell Biol. 11, 312–317.

    Article  PubMed  CAS  Google Scholar 

  6. Zlatanova J., Yaneva J. 1991. Histone H1-DNA interactions and their relation to chromatin structure and function. DNA Cell Biol. 10, 239–248.

    Article  PubMed  CAS  Google Scholar 

  7. An W., van Holde K., Zlatanova J. 1998. The non-histone chromatin protein HMG1 protects linker DNA on the side opposite to that protected by linker histones. J. Biol. Chem. 273, 26289–26291.

    Article  PubMed  CAS  Google Scholar 

  8. Silva J.J.R.F.D., Williams R.J.P. 1991. Biological Chemistry of the Elements. Oxford: Clarendon Press.

    Google Scholar 

  9. Glusker J.R. 1991. Structural aspects of metal liganding to functional groups in proteins. Adv. Protein Chem. 42, 1–76.

    Article  PubMed  CAS  Google Scholar 

  10. Metal Ions in Biological Systems: Manganese and Its Role in Biological Processes. Eds. Sigel S., Sigel H. NY: Marsel Dekker, 2000.

    Google Scholar 

  11. Noble C.G., Maxwell A. 2002.The role of GyrB in the DNA cleavage-religation reaction of DNA gyrase: A proposed two metal-ion mechanism. J. Mol. Biol. 318, 361–371.

    Article  PubMed  CAS  Google Scholar 

  12. Hays H., Berdis A. 2002. Manganese substantially alters the dynamics of translesion DNA synthesis. J. Biochem. 41, 4771–4778.

    Article  CAS  Google Scholar 

  13. Yamagata A., Kakuta Y., Masui R., Fukuyama K. 2002. The crystal structure of exonuclease RecJ bound to Mn2+ ion suggests how its characteristic motifs are involved in exonuclease activity. Proc. Natl. Acad. Sci. U.S.A. 99, 5908–5912.

    Article  PubMed  CAS  Google Scholar 

  14. Santagata S., Aidinis V., Spanopoulou E. 1998. The effect of Me2+ cofactors at the initial stages of V(D)J recombination. J. Biol. Chem. 273, 16325–16331.

    Article  PubMed  CAS  Google Scholar 

  15. Shockett P.E., Schatz D.G. 1999. DNA hairpin opening mediated by the RAG1 and RAG2 proteins. Mol. Cell Biol. 19, 4159–4166.

    PubMed  CAS  Google Scholar 

  16. Swanson P.C. 2002. A RAG-1/RAG-2 tetramer supports 12/23-regulated synapsis, cleavage, and transposition of V(D)J recombination signals. Mol. Cell Biol. 22, 7790–7801.

    Article  PubMed  CAS  Google Scholar 

  17. Polyanichko A.M., Chikhirzhina E.V., Kostyleva E.I., Vorob’ev V.I. 2004. Structure of DNA complexes with nonhistone chromosomal protein HMGB1 in the presence of manganese ions. Mol. Biol. (Moscow). 38, 891–898.

    Article  CAS  Google Scholar 

  18. Polyanichko A.M., Chikhirzhina E.V., Andrushchenko V.V., Kostyleva E.I., Wieser H., Vorob’ev V.I. 2004. The effect of Ca2+ ions on DNA compaction in the complex with HMGB1 nonhistone chromosomal protein. Mol. Biol. (Moscow). 38, 590–599.

    Article  CAS  Google Scholar 

  19. Chikhirzhina E.V., Polyanichko A.M., Skvortsov A.N., Kostyleva E.I., Houssier C., Vorob’ev V.I. 2002. HMG1 domains: The victims of the circumstance. Mol. Biol. (Moscow). 36, 412–418.

    Article  CAS  Google Scholar 

  20. Johns E.W. 1982. The HMG Chromosomal Proteins. London: Academic Press.

    Google Scholar 

  21. Kohlstaedt L.A, Cole R.D. 1994. Specific interaction between H1 histone and high mobility protein HMG1. Biochemistry. 33, 570–575.

    Article  PubMed  CAS  Google Scholar 

  22. Polyanichko A., Andrushchenko V., Chikhirzhina E., Vorob’ev V., Wieser H. 2004. The effect of manganese(II) on DNA structure: Electronic and vibrational circular dichroism studies. Nucleic Acids Res. 32, 989–996.

    Article  PubMed  CAS  Google Scholar 

  23. Polyanichko A.M., Chikhirzhina E.V., Andrushchenko V.V., Wieser H., Vorob’ev V.I. 2005. Spectroscopic investigations of the structure of DNA complexes with Mn2+ in UV and IR regions. Biophysics. 50, 710–715.

    Google Scholar 

  24. Ramakrishnan V., Fich J.T., Graziano V., Lee P.L., Sweet R.M. 1993.Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature. 362, 219–223.

    Article  PubMed  CAS  Google Scholar 

  25. Travers A., Thomas J.O. 2004. Chromosomal HMG-box proteins. In: Chromatin Structure and Dynamics: State-of-the-Art. Eds. Zlatanova J., Leuba S.H. NY: Elsevier, pp. 103–126.

    Chapter  Google Scholar 

  26. Lerman L.S. 1971. A transition to a compact form of DNA in polymer solutions. Proc. Natl. Acad. Sci. U.S.A. 68, 1886–1890

    Article  PubMed  CAS  Google Scholar 

  27. Jordan C.F, Lerman L.S, Venable J.H. 1972. Structure and circular dichroism of DNA in concentrated polymer solutions. Nature New Biol. 236, 67–70.

    Article  PubMed  CAS  Google Scholar 

  28. Chikhirzhina E.V., Vorob’ev V.I. 2002. Linker histones: Conformational changes and the role in the structural organization of chromatin. Tsitologiya. 44, 721–736.

    CAS  Google Scholar 

  29. Chikhirzhina E.V., Kostyleva E.I., Ramm E.I., Vorob’ev V.I. 1998. Chromatin compactification using a model system of DNA-protein complexes. Tsitologiya. 40, 883–888.

    CAS  Google Scholar 

  30. Fasman G.D., Valenzuela M.S., Adler A.L. 1971. Complexes of deoxyribonucleic acid with fragments of lysine-rich histone (f-1). Circular dichroism studies. Biochemistry. 10, 3795–3801.

    CAS  Google Scholar 

  31. Maniatis T., Venable J.H.Jr., Lerman L.S. 1974. The structure of psi DNA. J. Mol. Biol. 84, 37–64.

    Article  PubMed  CAS  Google Scholar 

  32. Jerzmanowski A. 2004. The linker histones. In: Chromatin Structure and Dynamics: State-of-the-Art. Eds. Zlatanova J., Leuba S.H. NY: Elsevier, pp. 75–102.

    Chapter  Google Scholar 

  33. Polyanichko A.M., Chikhirzhina E.V., Skvortsov A.N., Kostyleva E.I., Colson P., Houssier C., Vorob’ev V.I. 2002. The HMG1 ta(i)le. J. Biomol. Struct. Dyn. 19, 1053–1062.

    PubMed  CAS  Google Scholar 

  34. Hadden J.M., Declais A.-C., Phillips S.E.V., Lilley M.J. 2002. Metal ions bound at the active site of the junction resolving enzyme T7 endonuclease. EMBO J. 21, 3505–3515.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Chikhirzhina.

Additional information

Original Russian Text © E.V. Chikhirzhina, A.M. Polyanichko, E.I. Kostyleva, V.I. Vorobyev, 2011, published in Molekulyarnaya Biologiya, 2011, Vol. 45, No. 2, pp. 356–365.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chikhirzhina, E.V., Polyanichko, A.M., Kostyleva, E.I. et al. Structure of DNA complexes with chromosomal protein HMGB1 and histone H1 in the presence of manganese ions: 1. Circular dichroism spectroscopy. Mol Biol 45, 318–326 (2011). https://doi.org/10.1134/S002689331102004X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689331102004X

Keywords

Navigation