Skip to main content
Log in

System of innate immunity in plants

  • Innate Immunity. Virus Evasion Strategies
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The review deals with the mechanisms of innate immunity in plants focusing on families of pattern-recognition receptors and incorporates recent data on complete sequencing of several plant genomes. Plant immune response involves several families of receptors, both membrane-bound and cytoplasmic ones, containing conservative leucine-rich repeats. The lack of adaptive immunity and the associated rearrangements in the immune receptor genes in plants is partly counterbalanced by genetically encoded mechanisms of specific immunity to particular pathogens. There is a certain similarity between intracellular signal transduction and effector mechanisms in plant and animal innate immune systems, although the latter are considerably more complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CC:

coiled coil domain

ETI:

effector-triggered immunity

IL-1:

interleukin-1

LRRs:

leucine-rich repeats

NB-LRRs:

nucleotide binding leucine-rich repeats

MAPKs:

mitogen-activated protein kinases

MAPKKs:

MAPK kinases

PAMPs:

pathogen-associated molecular patterns

PRRs:

pattern-recognition receptors

PTI:

PAMPs-triggered immunity

RLKs:

receptor-like kinases

RLPs:

receptor-like proteins

TIR:

domain homologous to Toll and IL-1 receptor

TLRs:

Toll-like receptors

LPS:

lipopolysaccharide

References

  1. Nürnberger T., Brunner F. 2002. Innate immunity in plants and animals: Emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Curr. Opin. Plant Biol. 5, 318–324.

    Article  PubMed  Google Scholar 

  2. Imler J., Ferrandon D., Royet J., Reichhart J.M., Hetru C., Hoffmann J.A. 2004. Toll-dependent and Toll-independent immune responses in Drosophila. J. Endotoxin. Res. 10, 241–246.

    CAS  PubMed  Google Scholar 

  3. Pålsson-McDermott E.M., O’Neill L.A.J. 2007. Building an immune system from nine domains. Biochem. Soc. Trans. 35, 1437–1444

    Article  PubMed  Google Scholar 

  4. Jones J.D.G., Dangl J.L. 2006. The plant immune system. Nature. 444, 323–329.

    Article  CAS  PubMed  Google Scholar 

  5. Tarchevskii I.A. 2001. Pathogen-inducible plant proteins. Prikl. Mikrobiol. Biokhim. 37, 1–15.

    Google Scholar 

  6. van der Biezen E.A., Jones J.D. 1998. Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem. Sci. 23, 454–456.

    Article  PubMed  Google Scholar 

  7. van der Biezen E.A., Jones J.D. 1998. The NB-ARC domain: A novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr. Biol. 8, R226–R227.

    Article  PubMed  Google Scholar 

  8. Koonin E.V., Aravind L. 2000. The NACHT family: A new group of predicted NTPases implicated in apoptosis and MHC transcription activation. Trends Biochem. Sci. 25, 223–224.

    Article  CAS  PubMed  Google Scholar 

  9. Leipe D.D., Koonin E.V., Aravind L. 2004. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: Multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J. Mol. Biol. 343, 1–28.

    Article  CAS  PubMed  Google Scholar 

  10. Ausubel F.M. 2005. Are innate immune signaling path-ways in plants and animals conserved? Nature Immunol. 6, 973–979.

    Article  CAS  Google Scholar 

  11. Tameling W., Takken F. 2008. Resistance proteins: Scouts of the plant innate immune system. Eur. J. Plant Pathol. 121, 243–255.

    Article  Google Scholar 

  12. Pan Q., Wendel J., Fluhr R. 2000. Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J. Mol. Evol. 50, 203–213.

    CAS  PubMed  Google Scholar 

  13. Mucyn T.S., Clemente A., Andriotis V.M., Balmuth A.L., Oldroyd G.E., Staskawicz B.J., Rathjen J. P. 2006. The tomato NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity. Plant Cell. 18, 2792–2806.

    Article  CAS  PubMed  Google Scholar 

  14. Aravind L. 2000. The BED finger, a novel DNA-binding domain in chromatin-boundary-element-binding proteins and transposases. Trends Biochem. Sci. 25, 421–423.

    Article  CAS  PubMed  Google Scholar 

  15. Monosi B., Wisser R.J., Pennill L., Hulbert S.H. 2004. Full-genome analysis of resistance gene homologues in rice. Theor. Appl. Genet. 109, 1434–1447.

    Article  CAS  PubMed  Google Scholar 

  16. Meyers B.C., Kozik A., Griego A., Kuang H., Michelmore R.W. 2003. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell. 15, 809–834.

    Article  CAS  PubMed  Google Scholar 

  17. McHale L., Tan X., Koehl P., Michelmore R.W. 2006. Plant NBS-LRR proteins: Adaptable guards. Genome Biol. 7, 212.

    Article  PubMed  Google Scholar 

  18. Kuang H., Woo S., Meyers B.C., Nevo E., Michelmore R.W. 2004. Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell. 16, 2870–2894.

    Article  CAS  PubMed  Google Scholar 

  19. Chin D.B., Arroyo-Garcia R., Ochoa O.E., Kesseli R.V., Lavelle D.O., Michelmore R.W. 2001. Recombination and spontaneous mutation at the major cluster of resistance genes in Lettuce (Lactuca sativa). Genetics. 157, 831–849.

    CAS  PubMed  Google Scholar 

  20. D’yakov Yu., Bagirova S. 2001. What is common in plant and animal immunity. Priroda (Moscow). 11, 5–14.

    Google Scholar 

  21. Ellis J.G., Dodds P.N., Lawrence G.J. 2007. Flax rust resistance gene specificity is based on direct resistance-avirulence protein interactions. Annu. Rev. Phytopathol. 45, 289–306.

    Article  CAS  PubMed  Google Scholar 

  22. Caplan J., Padmanabhan M., Dinesh-Kumar S.P. 2008. Plant NB-LRR immune receptors: From recognition to transcriptional reprogramming. Cell. Host Microbe. 3, 126–135.

    Article  CAS  PubMed  Google Scholar 

  23. Felix G., Duran J.D., Volko S., Boller T. 1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18, 265–276.

    Article  CAS  PubMed  Google Scholar 

  24. Chinchilla D., Bauer Z., Regenass M., Boller T., Felix G. 2006. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell. 18, 465–476.

    Article  CAS  PubMed  Google Scholar 

  25. Robatzek S., Bittel P., Chinchilla D., Köchner P., Felix G., Shiu S.H., Boller T. 2007. Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities. Plant Mol. Biol. 64, 539–547.

    Article  CAS  PubMed  Google Scholar 

  26. Zipfel C., Robatzek S., Navarro L., Oakeley E.J., Jones J.D., Felix G., Boller T. 2004. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature. 428, 764–767.

    Article  CAS  PubMed  Google Scholar 

  27. Sun W., Dunning F.M., Pfund C., Weingarten R., Bent A.F. 2006. Within-species flagellin polymorphism in Xanthomonas campestris pv campestris and its impact on elicitation of Arabidopsis FLAGELLIN SENSING2-dependent defenses. Plant Cell. 18, 764–779.

    Article  CAS  PubMed  Google Scholar 

  28. Donnelly M.A., Steiner T.S. 2002. Two nonadjacent regions in enteroaggregative Escherichia coli flagellin are required for activation of toll-like receptor 5. J. Biol. Chem. 277, 40456–40461.

    Article  CAS  PubMed  Google Scholar 

  29. Kunze G., Zipfel C., Robatzek S., Niehaus K., Boller T., Felix G. 2004. The N terminus of bacterial elongation factor tu elicits innate immunity in Arabidopsis plants. Plant Cell. 16, 3496–3507.

    Article  CAS  PubMed  Google Scholar 

  30. Ron M., Avni A. 2004. The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell. 16, 1604–1615.

    Article  CAS  PubMed  Google Scholar 

  31. Kajava A.V. 1998. Structural diversity of leucine-rich repeat proteins. J. Mol. Biol. 277, 519–527.

    Article  CAS  PubMed  Google Scholar 

  32. Sun X., Cao Y., Wang S. 2006. Point mutations with positive selection were a major force during the evolution of a receptor-kinase resistance gene family of rice. Plant Physiol. 140, 998–1008.

    Article  CAS  PubMed  Google Scholar 

  33. Takahashi A., Casais C., Ichimura K., Shirasu K. 2003. HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 100, 11777–11782.

    Article  CAS  PubMed  Google Scholar 

  34. Liu Y., Burch-Smith T., Schiff M., Feng S., DineshKumar S.P. 2004. Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J. Biol. Chem. 279, 2101–2108.

    Article  CAS  PubMed  Google Scholar 

  35. Hubert D.A., Tornero P., Belkhadir Y., Krishna P., Takahashi A., Shirasu K., Dangl J.L. 2003. Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J. 22, 5679–5689.

    Article  CAS  PubMed  Google Scholar 

  36. de la Fuente van Bentem S., Vossen J.H., de Vries K.J., et al. 2005. Heat shock protein 90 and its co-chaperone protein phosphatase 5 interact with distinct regions of the tomato I-2 disease resistance protein. Plant J. 43, 284–298.

    Article  PubMed  Google Scholar 

  37. Leister R.T., Dahlbeck D., Day B., Li Y., Chesnokova O., Staskawicz B.J. 2005. Molecular genetic evidence for the role of SGT1 in the intramolecular complementation of Bs2 protein activity in Nicotiana benthamiana. Plant Cell. 17, 1268–1278.

    Article  CAS  PubMed  Google Scholar 

  38. Shao F., Golstein C., Ade J., Stoutemyer M., Dixon J.E., Innes R.W. 2003. Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science. 301, 1230–1233.

    Article  CAS  PubMed  Google Scholar 

  39. Mackey D., Holt B.F., Wiig A., Dangl J.L. 2002. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell. 108, 743–754.

    Article  CAS  PubMed  Google Scholar 

  40. Mestre P., Baulcombe D.C. 2006. Elicitor-mediated oligomerization of the tobacco N disease resistance protein. Plant Cell. 18, 491–501.

    Article  CAS  PubMed  Google Scholar 

  41. Ueda H., Yamaguchi Y., Sano H. 2006. Direct interaction between the tobacco mosaic virus helicase domain and the ATP-bound resistance protein, N factor during the hypersensitive response in tobacco plants. Plant Mol. Biol. 61, 31–45.

    Article  CAS  PubMed  Google Scholar 

  42. Tameling W.I., Vossen J.H., Albrecht M., Lengauer T., Berden J.A., Haring M.A., Cornelissen B.J., Takken F.L. 2006. Mutations in the NB-ARC domain of I-2 that impair ATP hydrolysis cause autoactivation. Plant Physiol. 140, 1233–1245.

    Article  CAS  PubMed  Google Scholar 

  43. Bendahmane A., Farnham G., Moffett P., Baulcombe D.C. 2002. Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato. Plant J. 32, 195–204.

    Article  CAS  PubMed  Google Scholar 

  44. Rairdan G., Moffett P. 2007. Brothers in arms? Common and contrasting themes in pathogen perception by plant NB-LRR and animal NACHT-LRR proteins. Microbes Infect. 9, 677–686.

    Article  CAS  PubMed  Google Scholar 

  45. Zimmermann S., Nürnberger T., Frachisse J.M., Wirtz W., Guern J., Hedrich R., Scheel D. 1997. Receptor-mediated activation of a plant Ca2+permeable ion channel involved in pathogen defense. Proc. Natl. Acad. Sci. U.S.A. 94, 2751–2755.

    Article  CAS  PubMed  Google Scholar 

  46. Lecourieux D., Mazars C., Pauly N., Ranjeva R., Pugin A. 2002. Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. Plant Cell. 14, 2627–2641.

    Article  CAS  PubMed  Google Scholar 

  47. Galione A., Churchill G.C. 2002. Interactions between calcium release pathways: Multiple messengers and multiple stores. Cell Calcium. 32, 343–354.

    Article  CAS  PubMed  Google Scholar 

  48. Nürnberger T., Scheel D. 2001. Signal transmission in the plant immune response. Trends Plant Sci. 6, 372–379.

    Article  PubMed  Google Scholar 

  49. Blume B., Nürnberger T., Nass N., Scheel D. 2000. Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell. 12, 1425–1440.

    Article  CAS  PubMed  Google Scholar 

  50. Torres M.A., Onouchi H., Hamada S., Machida C., Hammond-Kosack K.E., Jones J.D. 1998. Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). Plant J. 14, 365–370.

    Article  CAS  PubMed  Google Scholar 

  51. Simon-Plas F., Elmayan T., Blein J. 2002. The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells. Plant J. 31, 137–147.

    Article  CAS  PubMed  Google Scholar 

  52. Zhu Y., Qian W., Hua J. 2010. Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathog. 6, e1000844.

    Article  PubMed  Google Scholar 

  53. Durner J., Wendehenne D., Klessig D.F. 1998. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc. Natl. Acad. Sci. U.S.A. 95, 10328–10333.

    Article  CAS  PubMed  Google Scholar 

  54. Delledonne M., Xia Y., Dixon R.A., Lamb C. 1998. Nitric oxide functions as a signal in plant disease resistance. Nature. 394, 585–588.

    Article  CAS  PubMed  Google Scholar 

  55. Chandok M.R., Ytterberg A.J., van Wijk K.J., Klessig D.F. 2003. The pathogen-inducible nitric oxide synthase (iNOS) in plants is a variant of the P protein of the glycine decarboxylase complex. Cell. 113, 469–482.

    Article  CAS  PubMed  Google Scholar 

  56. Dong C., Davis R.J., Flavell R.A. 2002. MAP kinases in the immune response. Annu. Rev. Immunol. 20, 55–72.

    Article  CAS  PubMed  Google Scholar 

  57. The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 408, 796–815.

    Article  Google Scholar 

  58. Ligterink W., Kroj T., zur Nieden U., Hirt H., Scheel D. 1997. Receptor-mediated activation of a MAP kinase in pathogen defense of plants. Science. 276, 2054–2057.

    Article  CAS  PubMed  Google Scholar 

  59. Sharma P.C., Ito A, Shimizu T., Terauchi R., Kamoun S., Saitoh H. 2003. Virus-induced silencing of WIPK and SIPK genes reduces resistance to a bacterial pathogen, but has no effect on the INF1-induced hypersensitive response (HR) in Nicotiana benthamiana. Mol. Genet. Genomics. 269, 583–591.

    Article  CAS  PubMed  Google Scholar 

  60. Tarchevskii I. 2002. Signal’nye sistemy kletok rastenii (Signal Systems of Plant Cells). Moscow: Nauka.

    Google Scholar 

  61. Dorokhov Yu.L. Gene silencing in plants. Mol. Biol. (Moscow). 41, 519–530.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Vakhrusheva.

Additional information

Original Russian Text © O.A. Vakhrusheva, S.A. Nedospasov, 2011, published in Molekulyarnaya Biologiya, 2011, Vol. 45, No. 1, pp. 20–29.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vakhrusheva, O.A., Nedospasov, S.A. System of innate immunity in plants. Mol Biol 45, 16–23 (2011). https://doi.org/10.1134/S0026893311010146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893311010146

Keywords

Navigation