Skip to main content
Log in

Mechanisms of HIV-1 drug resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors

  • Molecular and Applied Aspects of Virology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

A global AIDS epidemics caused by human immunodeficiency virus type 1 (HIV-1), involving more than 2 million newly infected people annually, has existed for more than 25 years. The major obstacle in combating the global epidemic is rapid evolution of the virus by the selection of drug resistance mutations. Selection of drug-resistant HIV variants is so rapid that drug resistance is known for all of the approved anti-AIDS drugs. The review summarizes the scientific achievements in the field of reverse transcriptase drug resistance to licensed antiviral drugs, such as nucleoside (NRTI) and nonnucleoside (NNRTI) inhibitors. Principal mechanisms of their antiviral action, major drug resistance mutations, and molecular aspects of the classic mechanisms of HIV resistance to NRTIs and NNRTIs are described. The role of RNase H activity, which was recently implicated in drug resistance to reverse transcriptase inhibitors, is a focus of detailed discussion. A new NRTI and NNRTI dual resistance mechanism associated with reverse transcriptase mutations in the C-terminal region, which includes RNase H and connection domains, is analyzed. Comprehensive analysis of the factors affecting HIV drug resistance is important for understanding the molecular mechanisms of resistance and improving drug design and anti-HIV therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABC:

abacavir

AZT:

Zidovudine

BP:

binding pocket

ddI:

didanozine

DLV:

delavirdine

d4T:

stavudine

EFV:

efavirenz

ETR:

etravirin

FTC:

emtricitabine

NNRTI:

nonnucleoside reverse transcriptase inhibitor

NRTI:

nucleoside reverse transcriptase inhibitor

NVP:

nevirapine

TAM:

thymidine analog mutation

TNF:

tenofovir

3TC:

lamivudine

HIV-1:

human immunodeficiency virus type 1

References

  1. Palella F.J., Delaney K.M., Moorman A.C., et al. 1998. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. N. Engl. J. Med. 338, 853–860.

    PubMed  Google Scholar 

  2. Perelson A.S., Neumann A.U., Markowitz M., Leonard J.M., Ho D.D. 1996. HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time. Science. 271, 1582–1586.

    PubMed  CAS  Google Scholar 

  3. Mansky L.M. 1996. Forward mutation rate of human immunodeficiency virus type 1 in a T lymphoid cell line. AIDS Res. Hum. Retrovir. 12, 307–314.

    PubMed  CAS  Google Scholar 

  4. Svarovskaia E.S., Cheslock S.R., Zhang W.H., Hu W.S., Pathak V.K. 2003. Retroviral mutation rates and reverse transcriptase fidelity. Front. Biosci. 8, D117–D134.

    PubMed  Google Scholar 

  5. Hu W.S., Rhodes T., Dang Q., Pathak V. 2003. Retroviral recombination: Review of genetic analyses. Front. Biosci. 8, D143–D155.

    PubMed  CAS  Google Scholar 

  6. SPREAD programme. 2008. Transmission of drugresistant HIV-1 in Europe remains limited to single classes. AIDS. 22, 625–635.

    Google Scholar 

  7. Schultz S.J., Champoux J.J. 2008. RNase H activity: Structure, specificity, and function in reverse transcription. Virus Res. 134, 86–103.

    PubMed  CAS  Google Scholar 

  8. di Marzo Veronese F., Copeland T.D., deVico A.L., et al. 1986. Characterization of highly immunogenic p66/p51 as the reverse transcriptase of HTLV-III/LAV. Science. 231, 1289–1291.

    PubMed  Google Scholar 

  9. Lowe D.M., Aitken A., Bradley C., et al. 1988. HIV-1 reverse transcriptase: Crystallization and analysis of domain structure by limited proteolysis. Biochemistry. 27, 8884–8889.

    PubMed  CAS  Google Scholar 

  10. Huang H.F., Chopra R., Verdine G.L., Harrison S.C. 1998. Structure of a covalently trapped catalytic complex of HIV-I reverse transcriptase: Implications for drug resistance. Science. 282, 1669–1675.

    PubMed  CAS  Google Scholar 

  11. Jacobomolina A., Ding J.P., Nanni R.G., et al. 1993. Crystal structure of human immunodeficiency virus type-1 reverse transcriptase complexed with doublestranded DNA at 3.0 angstrom resolution shows bent DNA. Proc. Natl. Acad. Sci. U.S.A. 90, 6320–6324.

    CAS  Google Scholar 

  12. Kohlstaedt L.A., Wang J., Friedman J.M., Rice P.A., Steitz T.A. 1992. Crystal structure at 3.5 angstrom resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science. 256, 1783–1790.

    PubMed  CAS  Google Scholar 

  13. Larder B.A., Purifoy D.J., Powell K.L., Darby G. 1987. Site-specific mutagenesis of AIDS virus reverse transcriptase. Nature. 327, 716–717.

    PubMed  CAS  Google Scholar 

  14. Davies J.F., 2nd, Hostomska Z., Hostomsky Z., Jordan S.R., Matthews D.A. 1991. Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase. Science. 252, 88–95.

    PubMed  CAS  Google Scholar 

  15. Wohrl B.M., Krebs R., Goody R.S., Restle T. 1999. Refined model for primer/template binding by HIV-1 reverse transcriptase: Pre-steady-state kinetic analyses of primer/template binding and nucleotide incorporation events distinguish between different binding modes depending on the nature of the nucleic acid substrate. J. Mol. Biol. 292, 333–344.

    PubMed  CAS  Google Scholar 

  16. Kati W.M., Johnson K.A., Jerva L.F., Anderson K.S. 1992. Mechanism and fidelity of HIV reverse transcriptase. J.Biol. Chem. 267, 25988–25997.

    PubMed  CAS  Google Scholar 

  17. Schinazi R.F., Hernandez-Santiago B.I., Hurwitz S.J. 2006. Pharmacology of current and promising nucleosides for the treatment of human immunodeficiency viruses. Antiviral. Res. 71, 322–334.

    PubMed  CAS  Google Scholar 

  18. Ding J., Das K., Hsiou Y., et al. 1998. Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with a doublestranded DNA template-primer and an antibody Fab fragment at 2.8 Å resolution. J. Mol. Biol. 284, 1095–1111.

    PubMed  CAS  Google Scholar 

  19. Ren J., Esnouf R., Hopkins A., et al. 1995. The structure of HIV-1 reverse transcriptase complexed with 9-chloro-TIBO: lessons for inhibitor design. Structure. 3, 915–926.

    PubMed  CAS  Google Scholar 

  20. Das K., Sarafianos S.G., Clark A.D., Jr., et al. 2007. Crystal structures of clinically relevant Lys103Asn/Tyr181Cys double mutant HIV-1 reverse transcriptase in complexes with ATP and non-nucleoside inhibitor HBY 097. J. Mol. Biol. 365, 77–89.

    PubMed  CAS  Google Scholar 

  21. Sarafianos S.G., Das K., Clark A.D., Jr., et al. 1999. Lamivudine (3TC) resistance in HIV-1 reverse transcriptase involves steric hindrance with beta-branched amino acids. Proc. Natl. Acad. Sci. U.S.A. 96, 10027–10032.

    PubMed  CAS  Google Scholar 

  22. Gao H.Q., Boyer P.L., Sarafianos S.G., Arnold E., Hughes S.H. 2000. The role of steric hindrance in 3TC resistance of human immunodeficiency virus type-1 reverse transcriptase. J. Mol. Biol. 300, 403–418.

    PubMed  CAS  Google Scholar 

  23. Tisdale M., Kemp S.D., Parry N.R., Larder B.A. 1993. Rapid in vitro selection of human immunodeficiency virus type 1 resistant to 3′-thiacytidine inhibitors due to a mutation in the YMDD region of reverse transcriptase. Proc. Natl. Acad. Sci. U.S.A. 90, 5653–5656.

    PubMed  CAS  Google Scholar 

  24. Margot N.A., Isaacson E., McGowan I., et al. 2002. Genotypic and phenotypic analyses of HIV-1 in antiretroviral-experienced patients treated with tenofovir DF. AIDS. 16, 1227–1235.

    PubMed  CAS  Google Scholar 

  25. St Clair M.H., Martin J.L., Tudor-Williams G., et al. 1991. Resistance to ddI and sensitivity to AZT induced by a mutation in HIV-1 reverse transcriptase. Science. 253, 1557–1559.

    PubMed  CAS  Google Scholar 

  26. Shirasaka T., Kavlick M.F., Ueno T., et al. 1995. Emergence of human immunodeficiency virus type 1 variants with resistance to multiple dideoxynucleosides in patients receiving therapy with dideoxynucleosides. Proc. Natl. Acad. Sci. U.S.A. 92, 2398–2402.

    PubMed  CAS  Google Scholar 

  27. Sukhanova A.L., Roudinskii N.I., Bogoslovskaya E.V., et al. 2005. Polymorphism of the genome region coding for protease and reverse transcriptase in HIV type 1 subtype A variants prevailing in CIS countries. Mol. Biol. (Moscow). 39, 1063–1071.

    CAS  Google Scholar 

  28. Arion D., Kaushik N., McCormick S., Borkow G., Parniak M.A. 1998. Phenotypic mechanism of HIV-1 resistance to 3′-azido-3′-deoxythymidine (AZT): Increased polymerization processivity and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase. Biochemistry. 37, 15908–15917.

    PubMed  CAS  Google Scholar 

  29. Meyer P.R., Matsuura S.E., So A.G., Scott W.A. 1998. Unblocking of chain-terminated primer by HIV-1 reverse transcriptase through a nucleotide-dependent mechanism. Proc. Natl. Acad. Sci. U.S.A. 95, 13471–13476.

    PubMed  CAS  Google Scholar 

  30. Larder B.A., Darby G., Richman D.D. 1989. HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science. 243, 1731–1734.

    PubMed  CAS  Google Scholar 

  31. Harrigan P.R., Kinghorn I., Bloor S., et al. 1996. Significance of amino acid variation at human immunodeficiency virus type 1 reverse transcriptase residue 210 for zidovudine susceptibility. J. Virol. 70, 5930–5934.

    PubMed  CAS  Google Scholar 

  32. Hooker D.J., Tachedjian G., Solomon A.E., et al. 1996. An in vivo mutation from leucine to tryptophan at position 210 in human immunodeficiency virus type 1 reverse transcriptase contributes to high-level resistance to 3′-azido-3′-deoxythymidine. J. Virol. 70, 8010–8018.

    PubMed  CAS  Google Scholar 

  33. Das K., Bandwar R.P., White K.L., et al. 2009. Structural basis for the role of the K65r mutation in HIV-1 reverse transcriptase polymerization, excision antagonism, and tenofovir resistance. J. Biol. Chem. 284, 35092–35100.

    PubMed  CAS  Google Scholar 

  34. Ren J., Stammers D.K. 2008. Structural basis for drug resistance mechanisms for non-nucleoside inhibitors of HIV reverse transcriptase. Virus Res. 134, 157–170.

    PubMed  CAS  Google Scholar 

  35. Sarafianos S.G., Marchand B., Das K., et al. 2009 Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. J. Mol. Biol. 385, 693–713.

    PubMed  CAS  Google Scholar 

  36. Domaoal R.A., Demeter L.M. 2004. Structural and biochemical effects of human immunodeficiency virus mutants resistant to non-nucleoside reverse transcriptase inhibitors. Int. J. Biochem. Cell Biol. 36, 1735–1751.

    PubMed  CAS  Google Scholar 

  37. Bacheler L., Jeffrey S., Hanna G., et al. 2001. Genotypic correlates of phenotypic resistance to efavirenz in virus isolates from patients failing nonnucleoside reverse transcriptase inhibitor therapy. J. Virol. 75, 4999–5008.

    PubMed  CAS  Google Scholar 

  38. Demeter L.M., Shafer R.W., Meehan P.M., et al. 2000. Delavirdine susceptibilities and associated reverse transcriptase mutations in human immunodeficiency virus type 1 isolates from patients in a phase I/II trial of delavirdine monotherapy (ACTG 260). Antimicrob. Agents Chemother. 44, 794–797.

    PubMed  CAS  Google Scholar 

  39. Richman D.D., Havlir D., Corbeil J., et al. 1994. Nevirapine resistance mutations of human immunodeficiency virus type 1 selected during therapy. J. Virol. 68, 1660–1666.

    PubMed  CAS  Google Scholar 

  40. Vingerhoets J., Azijn H., Fransen E., et al. 2005. TMC125 displays a high genetic barrier to the development of resistance: evidence from in vitro selection experiments. J. Virol. 79, 12773–12782.

    PubMed  CAS  Google Scholar 

  41. Lazzarin A., Campbell T., Clotet B., et al. 2007. Efficacy and safety of TMC125 (etravirine) in treatment-experienced HIV-1-infected patients in DUET-2: 24-week results from a randomised, double-blind, placebo-controlled trial. Lancet. 370, 39–48.

    PubMed  CAS  Google Scholar 

  42. Madruga J.V., Cahn P., Grinsztejn B., et al. 2007. Efficacy and safety of TMC125 (etravirine) in treatmentexperienced HIV-1-infected patients in DUET-1: 24-week results from a randomised, double-blind, placebo-controlled trial. Lancet. 370, 29–38.

    PubMed  CAS  Google Scholar 

  43. Shafer R.W., Schapiro J.M. 2008. HIV-1 drug resistance mutations: an updated framework for the second decade of HAART. AIDS Rev. 10, 67–84.

    PubMed  Google Scholar 

  44. Llibre J.M., Santos J.R., Puig T., et al. 2008. Prevalence of etravirine-associated mutations in clinical samples with resistance to nevirapine and efavirenz. J. Antimicrob. Chemother. 62, 909–913.

    PubMed  CAS  Google Scholar 

  45. Wang D.P., Rizzo R.C., Tirado-Rives J., Jorgensen W.L. 2001. Antiviral drug design: computational analyses of the effects of the L100I mutation for HIV-RT on the binding of NNRTIs. Bioorg. Med. Chem. Lett. 11, 2799–2802.

    PubMed  CAS  Google Scholar 

  46. Hsiou Y., Das K., Ding J., Clark A.D., J et al. 1998. Structures of Tyr188Leu mutant and wild-type HIV-1 reverse transcriptase complexed with the non-nucleoside inhibitor HBY 097: inhibitor flexibility is a useful design feature for reducing drug resistance. J. Mol. Biol. 284, 313–323.

    PubMed  CAS  Google Scholar 

  47. Ren J., Nichols C.E., Chamberlain P.P., et al. 2004. Crystal structures of HIV-1 reverse transcriptases mutated at codons 100, 106 and 108 and mechanisms of resistance to non-nucleoside inhibitors. J. Mol. Biol. 336, 569–578.

    PubMed  CAS  Google Scholar 

  48. Hsiou Y., Ding J., Das K., et al. 2001. The Lys103Asn mutation of HIV-1 RT: a novel mechanism of drug resistance. J. Mol. Biol. 309, 437–445.

    PubMed  CAS  Google Scholar 

  49. Maga G., Amacker M., Ruel N., Hubscher U., Spadari S. 1997. Resistance to nevirapine of HIV-1 reverse transcriptase mutants: Loss of stabilizing interactions and thermodynamic or steric barriers are induced by different single amino acid substitutions. J. Mol. Biol. 274, 738–747.

    PubMed  CAS  Google Scholar 

  50. Furfine E.S., Reardon J.E. 1991. Reverse transcriptase.RNase H from the human immunodeficiency virus. Relationship of the DNA polymerase and RNA hydrolysis activities. J. Biol. Chem. 266, 406–412.

    PubMed  CAS  Google Scholar 

  51. Peliska J.A., Benkovic S.J. 1992. Mechanism of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase. Science. 258, 1112–1118.

    PubMed  CAS  Google Scholar 

  52. DeStefano J.J., Buiser R.G., Mallaber L.M., et al. 1991. Polymerization and RNase H activities of the reverse transcriptases from avian myeloblastosis, human immunodeficiency, and Moloney murine leukemia viruses are functionally uncoupled. J. Biol. Chem. 266, 7423–7431.

    PubMed  CAS  Google Scholar 

  53. DeStefano J.J., Mallaber L.M., Fay P.J., Bambara R.A. 1994. Quantitative analysis of RNA cleavage during RNA-directed DNA synthesis by human immunodeficiency and avian myeloblastosis virus reverse transcriptases. Nucleic Acids Res. 22, 3793–3800.

    PubMed  CAS  Google Scholar 

  54. Wisniewski M., Balakrishnan M., Palaniappan C., Fay P.J., Bambara R.A. 2000. The sequential mechanism of HIV reverse transcriptase RNase H. J. Biol. Chem. 275, 37664–37671.

    PubMed  CAS  Google Scholar 

  55. DeStefano J.J., Mallaber L.M, Rodriguez-Rodriguez L., Fay P.J., Bambara R.A. 1992. Requirements for strand transfer between internal regions of heteropolymer templates by human immunodeficiency virus reverse transcriptase. J. Virol. 66, 6370–6378.

    PubMed  CAS  Google Scholar 

  56. Fuentes G.M., Fay P.J., Bambara R.A. 1996. Relationship between plus strand DNA synthesis removal of downstream segments of RNA by human immunodeficiency virus, murine leukemia virus and avian myeloblastoma virus reverse transcriptases. Nucleic Acids Res. 24, 1719–1726.

    PubMed  CAS  Google Scholar 

  57. Smith C.M., Smith J.S., Roth M.J. 1999. RNase H requirements for the second strand transfer reaction of human immunodeficiency virus type 1 reverse transcription. J. Virol. 73, 6573–6581.

    PubMed  CAS  Google Scholar 

  58. Huber H.E., Richardson C.C. 1990. Processing of the primer for plus strand DNA synthesis by human immunodeficiency virus 1 reverse transcriptase. J. Biol. Chem. 265, 10565–10573.

    PubMed  CAS  Google Scholar 

  59. Luo G.X., Sharmeen L., Taylor J. 1990. Specificities involved in the initiation of retroviral plus-strand DNA. J. Virol. 64, 592–597.

    PubMed  CAS  Google Scholar 

  60. Smith J.S., Gritsman K., Roth M.J. 1994. Contributions of DNA polymerase subdomains to the RNase H activity of human immunodeficiency virus type 1 reverse transcriptase. J. Virol. 68, 5721–5729.

    PubMed  CAS  Google Scholar 

  61. Sarafianos S.G., Das K., Tantillo C., et al. 2001. Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA. EMBO J. 20, 1449–1461.

    PubMed  CAS  Google Scholar 

  62. Julias J.G., McWilliams M.J., Sarafianos S.G., et al. 2003. Mutation of amino acids in the connection domain of human immunodeficiency virus type 1 reverse transcriptase that contact the template-primer affects RNase H activity. J. Virol. 77, 8548–8554.

    PubMed  CAS  Google Scholar 

  63. Julias J.G., McWilliams M.J., Sarafianos S.G., Arnold E., Hughes S.H. 2002. Mutations in the RNase H domain of HIV-1 reverse transcriptase affect the initiation of DNA synthesis and the specificity of RNase H cleavage in vivo. Proc. Natl. Acad. Sci. U.S.A. 99, 9515–9520.

    PubMed  CAS  Google Scholar 

  64. Rausch J.W., Lener D., Miller J.T., et al. 2002. Altering the RNase H primer grip of human immunodeficiency virus reverse transcriptase modifies cleavage specificity. Biochemistry. 41, 4856–4865.

    PubMed  CAS  Google Scholar 

  65. Nikolenko G.N., Palmer S., Maldarelli F., et al. 2005. Mechanism for nucleoside analog-mediated abrogation of HIV-1 replication: Balance between RNase H activity and nucleotide excision. Proc. Natl. Acad. Sci. U.S.A. 102, 2093–2098.

    PubMed  CAS  Google Scholar 

  66. Delviks-Frankenberry K.A., Nikolenko G.N., Barr R., Pathak V.K. 2007. Mutations in human immunodeficiency virus type 1 RNase H primer grip enhance 3-Azido-3′-deoxythymidine resistance. J. Virol. 81, 6837–6845.

    PubMed  CAS  Google Scholar 

  67. Nikolenko G.N., Delviks-Frankenberry K.A., Palmer S., et al. 2007. Mutations in the connection domain of HIV-1 reverse transcriptase increase 3′-azido-3′-deoxythymidine resistance. Proc. Natl. Acad. Sci. U.S.A. 104, 317–322.

    PubMed  CAS  Google Scholar 

  68. Brehm J.H., Koontz D., Meteer J.D., et al. 2007. Selection of mutations in the connection and RNase H domains of human immunodeficiency virus type 1 reverse transcriptase that increase resistance to 3′-azido-3′-dideoxythymidine. J. Virol. 81, 7852–7859.

    PubMed  CAS  Google Scholar 

  69. Delviks-Frankenberry K.A., Nikolenko G.N., Boyer P.L., et al. 2008. HIV-1 reverse transcriptase connection subdomain mutations reduce template RNA degradation and enhance AZT excision. Proc. Natl. Acad. Sci. U.S.A. 105, 10943–10948.

    PubMed  CAS  Google Scholar 

  70. Brehm J.H., Mellors J.W., Sluis-Cremer N. 2008. Mechanism by which a glutamine to leucine substitution at residue 509 in the ribonuclease H domain of HIV-1 reverse transcriptase confers zidovudine resistance. Biochemistry. 47, 14020–14027.

    PubMed  CAS  Google Scholar 

  71. Ehteshami M., Beilhartz G.L., Scarth B.J., et al. 2008. Connection domain mutations N348I and A360V in HIV-1 reverse transcriptase enhance resistance to 3′-azido-3′-deoxythymidine through both RNase H-dependent and -independent mechanisms. J. Biol. Chem. 283, 22222–22232.

    PubMed  CAS  Google Scholar 

  72. Yap S.H., Sheen C.W., Fahey J., et al. 2007. N348I in the connection domain of HIV-1 reverse transcriptase confers zidovudine and nevirapine resistance. PLoS Med. 4, 1887–1900.

    CAS  Google Scholar 

  73. Radzio J., Sluis-Cremer N. 2008. Efavirenz accelerates HIV-1 reverse transcriptase ribonuclease H cleavage, leading to diminished zidovudine excision. Mol. Pharmacol. 73, 601–606.

    PubMed  CAS  Google Scholar 

  74. Zelina S., Sheen C.W., Radzio J., Mellors J.W., Sluis-Cremer N. 2008. Mechanisms by which the G333D mutation in human immunodeficiency virus type 1 reverse transcriptase facilitates dual resistance to zidovudine and lamivudine. Antimicrob. Agents Chemother. 52, 157–163.

    PubMed  CAS  Google Scholar 

  75. Roquebert B., Wirden M., Simon A., et al. 2007. Relationship between mutations in HIV-1 RNase H domain and nucleoside reverse transcriptase inhibitors resistance mutations in naive and pre-treated HIV infected patients. J. Med. Virol. 79, 207–211.

    PubMed  CAS  Google Scholar 

  76. Santos A.F., Lengruber R.B., Soares E.A., et al. 2008. Conservation patterns of HIV-1 RT connection and RNase H domains: identification of new mutations in NRTI-treated patients. PLoS One. 3, e1781.

    PubMed  Google Scholar 

  77. Hehl E.A., Joshi P., Kalpana G.V., Prasad V.R. 2004. Interaction between human immunodeficiency virus type 1 reverse transcriptase and integrase proteins. J. Virol. 78, 5056–5067.

    PubMed  CAS  Google Scholar 

  78. Ntemgwa M., Wainberg M.A., Oliveira M., et al. 2007. Variations in reverse transcriptase and RNase H domain mutations in human immunodeficiency virus type 1 clinical isolates are associated with divergent phenotypic resistance to zidovudine. Antimicrob. Agents Chemother. 51, 3861–3869.

    PubMed  CAS  Google Scholar 

  79. Cane P.A., Green H., Fearnhill E., Dunn D. 2007. Identification of accessory mutations associated with high-level resistance in HIV-1 reverse transcriptase. AIDS. 21, 447–455.

    PubMed  CAS  Google Scholar 

  80. Waters J.M., O’Neal W., White K.L., et al. 2009. Mutations in the thumb-connection and RNase H domain of HIV type-1 reverse transcriptase of antiretroviral treatment-experienced patients. Antivir. Ther. 14, 231–239.

    PubMed  CAS  Google Scholar 

  81. Hachiya A., Kodama E.N., Sarafianos S.G., et al. 2008. Amino acid mutation N348I in the connection subdomain of human immunodeficiency virus type 1 reverse transcriptase confers multiclass resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors. J. Virol. 82, 3261–3270.

    PubMed  CAS  Google Scholar 

  82. Blanca G., Baldanti F., Paolucci S., et al. 2003. Nevirapine resistance mutation at codon 181 of the HIV-1 reverse transcriptase confers stavudine resistance by increasing nucleotide substrate discrimination and phosphorolytic activity. J. Biol. Chem. 278, 15469–15472.

    PubMed  CAS  Google Scholar 

  83. Paolucci S., Baldanti F., Campanini G., et al. 2007. NNRTI-selected mutations at codon 190 of human immunodeficiency virus type 1 reverse transcriptase decrease susceptibility to stavudine and zidovudine. Antiviral Res. 76, 99–103.

    PubMed  CAS  Google Scholar 

  84. Paolucci S., Baldanti F., Maga G., et al. 2004. Gln145Met/Leu changes in human immunodeficiency virus type 1 reverse transcriptase confer resistance to nucleoside and nonnucleoside analogs and impair virus replication. Antimicrob. Agents Chemother. 48, 4611–4617.

    PubMed  CAS  Google Scholar 

  85. Nikolenko G.N., Delviks-Frankenberry K.A., Pathak V.K. 2010. A novel molecular mechanism of dual resistance to NRTIs and NNRTIs. J. Virol. 84, 5238–5249

    PubMed  CAS  Google Scholar 

  86. Gupta S., Fransen S., Paxinos E., et al. 2006. Infrequent occurrence of mutations in the C-terminal region of reverse transcriptase modulates susceptibility to RT inhibitors. Antivir. Ther. 11, S143.

    Google Scholar 

  87. Hachiya A., Shimane K., Sarafianos S.G., et al. 2009. Clinical relevance of substitutions in the connection subdomain and RNase H domain of HIV-1 reverse transcriptase from a cohort of antiretroviral treatmentnaive patients. Antiviral Res. 82, 115–121.

    PubMed  CAS  Google Scholar 

  88. Poveda E., de Mendoza C., Pattery T., et al. 2008. Phenotypic impact of resistance mutations on etravirine susceptibility in HIV patients with prior failure to nonnucleoside analogues. AIDS. 22, 2395–2398.

    PubMed  CAS  Google Scholar 

  89. Sluis-Cremer N., Tachedjian G. 2008. Mechanisms of inhibition of HIV replication by non-nucleoside reverse transcriptase inhibitors. Virus Res. 134, 147–156.

    PubMed  CAS  Google Scholar 

  90. Gopalakrishnan V., Benkovic S. 1994. Effect of a thiobenzimidazolone derivative on DNA strand transfer catalyzed by HIV-1 reverse transcriptase. J. Biol. Chem. 269, 4110–4115.

    PubMed  CAS  Google Scholar 

  91. Palaniappan C., Fay P.J., Bambara R.A. 1995. Nevirapine alters the cleavage specificity of ribonuclease H of human immunodeficiency virus 1 reverse transcriptase. J. Biol. Chem. 270, 4861–4869.

    PubMed  CAS  Google Scholar 

  92. Shaw-Reid C.A., Feuston B., Munshi V., et al. 2005. Dissecting the effects of DNA polymerase and ribonuclease H inhibitor combinations on HIV-1 reversetranscriptase activities. Biochemistry. 44, 1595–1606.

    PubMed  CAS  Google Scholar 

  93. Hang J.Q., Li Y., Yang Y., et al. 2007. Substrate-dependent inhibition or stimulation of HIV RNase H activity by non-nucleoside reverse transcriptase inhibitors (NNRTIs). Biochem. Biophys. Res. Commun. 352, 341–350.

    PubMed  CAS  Google Scholar 

  94. Abbondanzieri E.A., Bokinsky G., Rausch J.W., et al. 2008. Dynamic binding orientations direct activity of HIV reverse transcriptase. Nature. 453, 184–189.

    PubMed  CAS  Google Scholar 

  95. Grobler J.A., Dornadula G., Rice M.R., et al. 2007. HIV-1 reverse transcriptase plus-strand initiation exhibits preferential sensitivity to non-nucleoside reverse transcriptase inhibitors in vitro. J. Biol. Chem. 282, 8005–8010.

    PubMed  CAS  Google Scholar 

  96. Liu S., Abbondanzieri E.A., Rausch J.W., Le Grice S.F., Zhuang X. 2008. Slide into action: dynamic shuttling of HIV reverse transcriptase on nucleic acid substrates. Science. 322, 1092–1097.

    PubMed  CAS  Google Scholar 

  97. Srivastava S., Sluis-Cremer N., Tachedjian G. 2006. Dimerization of human immunodeficiency virus type 1 reverse transcriptase as an antiviral target. Curr. Pharm. Des. 12, 1879–1894.

    PubMed  CAS  Google Scholar 

  98. Tachedjian G., Moore K.L., Goff S.P., Sluis-Cremer N. 2005. Efavirenz enhances the proteolytic processing of an HIV-1 pol polyprotein precursor and reverse transcriptase homodimer formation. FEBS Lett. 579, 379–384.

    PubMed  CAS  Google Scholar 

  99. Tachedjian G., Orlova M., Sarafianos S.G., Arnold E., Goff S.P. 2001. Nonnucleoside reverse transcriptase inhibitors are chemical enhancers of dimerization of the HIV type 1 reverse transcriptase. Proc. Natl. Acad. Sci. U.S.A. 98, 7188–7193.

    PubMed  CAS  Google Scholar 

  100. Archer R.H., Dykes C., Gerondelis P., et al. 2000. Mutants of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase resistant to nonnucleoside reverse transcriptase inhibitors demonstrate altered rates of RNase H cleavage that correlate with HIV-1 replication fitness in cell culture. J. Virol. 74, 8390–8401.

    PubMed  CAS  Google Scholar 

  101. Archer R.H., Wisniewski M., Bambara R.A., Demeter L.M. 2001. The Y181C mutant of HIV-1 reverse transcriptase resistant to nonnucleoside reverse transcriptase inhibitors alters the size distribution of RNase H cleavages. Biochemistry. 40, 4087–4095.

    PubMed  CAS  Google Scholar 

  102. Gerondelis P., Archer R.H., Palaniappan C., et al. 1999. The P236L delavirdine-resistant human immunodeficiency virus type 1 mutant is replication defective and demonstrates alterations in both RNA 5′-end- and DNA 3′-end-directed RNase H activities. J. Virol. 73, 5803–5813.

    PubMed  CAS  Google Scholar 

  103. Fan N., Rank K.B., Slade D.E., et al. 1996. A drug resistance mutation in the inhibitor binding pocket of human immunodeficiency virus type 1 reverse transcriptase impairs DNA synthesis and RNA degradation. Biochemistry. 35, 9737–9745.

    PubMed  CAS  Google Scholar 

  104. Wang J., Dykes C., Domaoal R.A., et al. 2006. The HIV-1 reverse transcriptase mutants G190S and G190A, which confer resistance to non-nucleoside reverse transcriptase inhibitors, demonstrate reductions in RNase H activity and DNA synthesis from tRNA(Lys, 3) that correlate with reductions in replication efficiency. Virology. 348, 462–474.

    PubMed  CAS  Google Scholar 

  105. Figueiredo A., Zelina S., Sluis-Cremer N., Tachedjian G. 2008. Impact of residues in the nonnucleoside reverse transcriptase inhibitor binding pocket on HIV-1 reverse transcriptase heterodimer stability. Curr. HIV Res. 6, 130–137.

    PubMed  CAS  Google Scholar 

  106. Jochmans D. 2008. Novel HIV-1 reverse transcriptase inhibitors. Virus Res. 134, 171–185.

    PubMed  CAS  Google Scholar 

  107. Boyer P.L., Julias J.G., Ambrose Z., et al. 2007. The nucleoside analogs 4′C-methyl thymidine and 4′Cethyl thymidine block DNA synthesis by wild-type HIV-1 RT and excision proficient NRTI resistant RT variants. J. Mol. Biol. 371, 873–882.

    PubMed  CAS  Google Scholar 

  108. Boyer P.L., Julias J.G., Marquez V.E., Hughes S.H. 2005. Fixed conformation nucleoside analogs effectively inhibit excision-proficient HIV-1 reverse transcriptases. J. Mol. Biol. 345, 441–450.

    PubMed  CAS  Google Scholar 

  109. Das K., Clark A.D., Jr., Lewi P.J., et al. 2004. Roles of conformational and positional adaptability in structure-based design of TMC125-R165335 (etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants. J. Med. Chem. 47, 2550–2560.

    PubMed  CAS  Google Scholar 

  110. Freeman G.A., Andrews Iii C.W., 3rd, Hopkins A.L., et al. 2004. Design of non-nucleoside inhibitors of HIV-1 reverse transcriptase with improved drug resistance properties: 2. J. Med. Chem. 47, 5923–5936.

    PubMed  CAS  Google Scholar 

  111. Hopkins A.L., Ren J., Milton J., et al. 2004. Design of non-nucleoside inhibitors of HIV-1 reverse transcriptase with improved drug resistance properties: 1. J. Med. Chem. 47, 5912–5922.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Nikolenko.

Additional information

Original Russian Text © G. N. Nikolenko, A.T. Kotelkin, S.F. Oreshkova, A.A. Ilyichev, 2011, published in Molekulyarnaya Biologiya, 2011, Vol. 45, No. 1, pp. 108–126.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolenko, G.N., Kotelkin, A.T., Oreshkova, S.F. et al. Mechanisms of HIV-1 drug resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors. Mol Biol 45, 93–109 (2011). https://doi.org/10.1134/S0026893311010092

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893311010092

Keywords

Navigation