Skip to main content
Log in

5,10,15,20-Tetra-(N-methyl-3-pyridyl)porphyrin destabilizes the antiparallel telomeric quadruplex d(TTAGGG)4

  • Structural-Functional Analysis of Biopolymers and Their Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

5,10,15,20-Tetra-(N-methyl-3-pyridyl)porphyrin (TMPyP3) is a DNA-binding derivative of porphyrins. A comparative study of the binding of this ligand to biologically significant DNA structures was performed. For this purpose, the interactions of TMPyP3 with the antiparallel telomeric G-quadruplex d(TTAGGG)4, oligonucleotide dTTAGGGTTAGAG(TTAGGG)2 (not forming a quadruplex structure), double-stranded d(AC)8 · d(GT)8, and single-stranded d(AC)8 and d(GT)8 DNA molecules have been studied. Analysis of absorption isotherms has demonstrated that the binding constants and the number of binding sites for the complexes TMPyP3: DNA increase in the following order: d(AC)8 < d(GT)8 < d(AC)8 · d(GT)8 = d(TTAGGG)4 < dTTAGGGTTAGAG(TTAGGG)2. It has been for the first time demonstrated that the constant for TMPyP3 binding to unfolded dTTAGGGTTAGAG(TTAGGG)2 strand (1.3 × 107 M−1) is approximately threefold higher than for the G-quadruplex d(TTAGGG)4 (4.7 × 106 M−1). Binding of two TMPyP3 molecules to d(TTAGGG)4 decreases the thermostability of G-quadruplex (ΔTm = −8°C). Circular dichroism spectra of the TMPyP3 complexes with d(TTAGGG)4 suggest that the ligand partially unfolds the G-quadruplex structure. Structural destabilization of the telomeric G-quadruplex by TMPyP3 can explain the relatively low activity of this ligand as a telomerase inhibitor and a low cytotoxicity for cultured tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CD:

circular dichroism

References

  1. Moyzis R.K., Buckingham J.M., Cram L.S., Dani M., Deaven L.L., Jones M.D., Meyne J., Ratliff R.L., Wu J.R. 1988. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci. USA. 85, 6622–6626.

    Article  CAS  PubMed  Google Scholar 

  2. Wright W.E., Tesmer V.M., Huffman K.E., Levene S.D., Shay J.W. 1997. Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev. 11, 2801–2809.

    Article  CAS  PubMed  Google Scholar 

  3. Neidle S., Parkinson G.N. 2003. The structure of telomeric DNA. Curr. Opin. Struct. Biol. 13, 275–283.

    Article  CAS  PubMed  Google Scholar 

  4. Tang J., Kan Z.Y., Yao Y., Wang Q., Hao Y.H., Tan Z. 2007. G-quadruplex preferentially forms at the very 3’ end of vertebrate telomeric DNA. Nucleic Acids Res. 36, 1200–1208.

    Article  PubMed  Google Scholar 

  5. Neidle S., Parkinson G. 2002. Telomere maintenance as a target for anticancer drug discovery. Nature Rev. Drug Discov. 1, 383–393.

    Article  CAS  Google Scholar 

  6. Zahler A.M., Williamson J.R., Cech T.R., Prescott D.M. 1991. Inhibition of telomerase by G-quartet DNA structures. Nature. 350, 718–720.

    Article  CAS  PubMed  Google Scholar 

  7. Rezler E.M., Bearss D.J., Hurley L.H. 2002. Telomeres and telomerases as drug targets. Curr. Opin. Pharmacol. 2, 415–423.

    Article  CAS  PubMed  Google Scholar 

  8. Megnin F., Faustino P.J., Lyon R.C., Lelkes P.I., Cohen J.S. 1987. Studies on the mechanism of selective retention of por-phyrins and metalloporphyrins by cancer cells. Biochim. Biophys. Acta. 929, 173–181.

    Article  CAS  PubMed  Google Scholar 

  9. Wongsinkongman P., Brossi A., Wang H.K., Bastow K.F., Lee K.H. 2002. Antitumor agents. Part 209: Pheophorbide-a derivatives as photo-Independent cytotoxic agents. Bioorg. Med. Chem. 10, 583–591.

    Article  CAS  PubMed  Google Scholar 

  10. Pandey R.K. 2000. Recent advances in photodynamic therapy. J. Porph. Phthalocyan. 4, 368–373.

    Article  CAS  Google Scholar 

  11. Argyris E.G., Vanderkooi J.M., Venkateswaran P.S., Kay B.K., Paterson Y. 1999. The connection domain is implicated in metalloporphyrin binding and inhibition of HIV reverse transcriptase. J. Biol. Chem. 274, 1549–1556.

    Article  CAS  PubMed  Google Scholar 

  12. Hurley L.H. 2001. Secondary DNA structures as molecular targets for cancer therapeutics. Biochem. Soc. Trans. 29, 692–696.

    Article  CAS  PubMed  Google Scholar 

  13. Mergny J.L., Riou J.F., Mailliet P., Teulade-Fichou M.P., Gilson E. 2002. Natural and pharmacological regulation of telomerase. Nucleic Acids Res. 30, 839–865.

    Article  CAS  PubMed  Google Scholar 

  14. Todd A.K., Johnston M., Neidle S. 2005. Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res. 33, 2901–2907.

    Article  CAS  PubMed  Google Scholar 

  15. Anantha N.V., Azam M., Sheardy R.D. 1998. Porphyrin binding to quadrupled T4G4. Biochemistry. 9, 2709–2714.

    Article  Google Scholar 

  16. Sun D., Thompson B., Cathers B.E., Salazar M., Kerwin S.M., Trent J.O., Jenkins T.C., Neidle S., Hurley L.H. 1997. Inhibition of human telomerase by a G-quadruplex-interactive compound. J. Med. Chem. 40, 2113–2116.

    Article  CAS  PubMed  Google Scholar 

  17. Sari M.A., Battioni J.P., Dupre D., Mansuy D., Le Pecq J.B. 1990. Interaction of cationic porphyrins with DNA: importance of the number and position of the charges and minimum structural requirements for intercalation. Biochemistry. 29, 4205–4215.

    Article  CAS  PubMed  Google Scholar 

  18. Arora A., Maiti S. 2008. Effect of loop orientation on quadruplex-TMPyP4 interaction. J. Phys. Chem. B. 112, 8151–8159.

    Article  CAS  PubMed  Google Scholar 

  19. Fiel R.J., Howard J.C., Mark E.H., Datta Gupta N. 1979. Interaction of DNA with a porphyrin ligand: evidence for intercalation. Nucl. Acids Res. 6, 3093–3118.

    Article  CAS  PubMed  Google Scholar 

  20. Bennett M., Krah A., Wien F., Garman E., McKenna R., Sanderson M., Neidle S.A. 2000. DNA-porphyrin minor-groove complex at atomic resolution: the structural consequences of porphyrin ruffling. Proc. Natl. Acad. Sci. USA. 97, 9476–9481.

    Article  CAS  PubMed  Google Scholar 

  21. Wei C., Jia G., Yuan J., Feng Z., Li C. 2006. A spectroscopic study on the interactions of porphyrin with G-quadruplex DNAs. Biochemistry. 45, 6681–6691.

    Article  CAS  PubMed  Google Scholar 

  22. Han H., Langley D.R., Rangan A., Hurley L.H. 2001. Selective interactions of cationic porphyrins with G-quadruplex structures. J. Am. Chem. Soc. 123, 8902–8913.

    Article  CAS  PubMed  Google Scholar 

  23. Freyer M.W., Buscaglia R., Kaplan K., Cashman D., Hurley L.H., Lewis E.A. 2007. Biophysical studies of the c-MYC NHE III1 promoter: model quadruplex interactions with a cationic porphyrin. Biophys. J. 92, 2007–2015.

    Article  CAS  PubMed  Google Scholar 

  24. Tomasko M., Vorlícková M., Sagi J. 2008. Substitution of adenine for guanine in the quadruplex-forming human telomere DNA sequence G(3)(T(2)AG(3))(3). Biochimie. 91, 171–179.

    Article  PubMed  Google Scholar 

  25. Mergny J.L., Phan A.T., Lacroix L. 1998. Following G-quartet formation by UV-spectroscopy. FEBS Lett. 435, 74–78.

    Article  CAS  PubMed  Google Scholar 

  26. Borisova O.F., Golova Yu.B., Gottikh B.P., et al. 1991. Parallel double stranded helices and the tertiary structure of nucleic acids. J. Biomol. Struct. Dyn. 8, 1187–1210.

    CAS  PubMed  Google Scholar 

  27. Shchekotikhin A.E., Glazunova V.A., Dezhenkova L.G., L, et al. 2009. Synthesis and cytotoxic properties of 4,11-bis[(aminoethyl)amino]anthra[2,3-b]thiophene-5,10-diones, novel analogues of antitumor anthracene-9,10-diones. Bioorg. Med. Chem. 17, 1861–1869.

    Article  CAS  PubMed  Google Scholar 

  28. Pasternack R.F., Gibbs E.J. 1989. Interaction of porphyrins and metalloporphyrins with nucleic acids. In: Metal-DNA Chemistry. Ed. Tullins T. Washington, D.C.: Amer. Chem. Soc., 59–73.

    Chapter  Google Scholar 

  29. Pasternack R.F., Gibbs E.J., Villafranca J.J. 1983. Interactions of porphyrins with nucleic acids. Biochemistry. 22, 2406–2414.

    Article  CAS  PubMed  Google Scholar 

  30. Besschetnova I.A., Chudinov A.V., Kalyuzhnyi D.N., Shchelkina A.K., Borisova O.F., Tokalov S.V., Kuznetsova V.E., Lobanov A.V., Rumyantseva V.D., Barskii V.E., Mirzabekov A.D. 2002. Fluorescence of meso-tetrakis[4-(carboxy)phenyl]porphine bound covalently to the oligonucleotides d(CG)5 and d(TA)5. Biofizika. 47, 259–267.

    CAS  PubMed  Google Scholar 

  31. Smirnov I., Shafer R.H. 2000. Effect of loop sequence and size on DNA aptamer stability. Biochemistry. 39, 1462–1468.

    Article  CAS  PubMed  Google Scholar 

  32. Besschetnova I.A., Pozmogova G.E., Chuvilin A.N., Shchyolkina A.K., Borisova O.F. 2006. Complexes of telomeric oligonucleotide d(TTAGGG)4 with the new recombinant protein vector PGEk carrying nucleic ac-ids into proliferating cells. Mol. Biol. (Moscow). 40, 489–496.

    Article  CAS  Google Scholar 

  33. Shi D.F., Wheelhouse R.T., Sun D., Hurley L.H. 2001. Quadruplex-interactive agents as telomerase inhibitors: synthesis of porphyrins and structure-activity relationship for the inhibition of telomerase. J. Med. Chem. 44, 4509–4523.

    Article  CAS  PubMed  Google Scholar 

  34. Han F.X., Wheelhouse R.T., Hurley L.H. 1999. Interactions of TMPyP4 and TMPyP2 with quadruplex DNA. Structural basis for the differential effects on telomerase inhibition. J. Am. Chem. Soc. 121, 3561–3570.

    Article  CAS  Google Scholar 

  35. Haq I., Trent J.O., Chowdhry B.Z., Jenkins T. C. 1999. Intercalative G-tetraplex stabilization of telomeric DNA by a cationic porphyrin. J. Am. Chem. Soc. 121, 1768–1779.

    Article  CAS  Google Scholar 

  36. Yamashita T., Uno T., Ishikawa Y. 2005. Stabilization of guanine quadruplex DNA by the binding of porphyrins with cationic side arms. Bioorg. Med. Chem. 13, 2423–2430.

    Article  CAS  PubMed  Google Scholar 

  37. Izbicka E., Wheelhouse R.T., Raymond E., Davidson K.K., Lawrence R.A., Sun D., Windle B.E., Hurley L.H., von Hoff D.D. 1999. Effects of cationic porphyrins as G-quadruplex interactive agents in human tumor cells. Cancer Res. 59, 639–644.

    CAS  PubMed  Google Scholar 

  38. Grand C.L., Han H., Muñoz R.M., Weitman S., von Hoff D.D., Hurley L.H., Bearss D.J. 2002. The cationic porphyrin TMPyP4 down-regulates c-MYC and human telomerase reverse transcriptase expression and inhibits tumor growth in vivo. Mol. Cancer Ther. 1, 565–573.

    CAS  PubMed  Google Scholar 

  39. Rezler E.M., Seenisamy J., Bashyam S., Kim Mu-Yo., White E., Wilson D.W., Hurley L.H. 2005. Telomestatin and diseleno sapphyrin bind selectively to two different forms of the human telomeric G-quadruplex structure. J. Am. Chem. Soc. 127, 9439–9447.

    Article  CAS  PubMed  Google Scholar 

  40. Han H., Langley D.R., Rangan A., Hurley L.H. 2001. Selective interactions of cationic porphyrins with G-quadruplex structures. J. Am. Chem. Soc. 123, 8902–8913.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. F. Borisova.

Additional information

Original Russian Text © Yu.V. Dutikova, O.F. Borisova, A.K. Shchyolkina, J. Lin, S. Huang, A.A. Shtil, D.N. Kaluzhny, 2010, published in Molekulyarnaya Biologiya, 2010, Vol. 44, No. 5, pp. 929–937.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutikova, Y.V., Borisova, O.F., Shchyolkina, A.K. et al. 5,10,15,20-Tetra-(N-methyl-3-pyridyl)porphyrin destabilizes the antiparallel telomeric quadruplex d(TTAGGG)4 . Mol Biol 44, 823–831 (2010). https://doi.org/10.1134/S0026893310050201

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893310050201

Key words

Navigation