Skip to main content
Log in

The polymorphisms G(−174)C in IL6 gene and G(−1082)A in IL10 gene are associated with poor outcomes in patients with acute coronary syndrome

  • Genomics and Transcriptomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Association between the rates of poor outcomes in the patient cohort with acute coronary syndrome and polymorphisms G(−174)C in the IL6 gene and G(−1082)A in the IL10 gene were determined. In total, 1145 patients hospitalized for coronary artery disease to cardiological hospitals of Moscow, St. Petersburg, Kazan, Chelyabinsk, Perm, Stavropol, and Rostov-on-Don were examined. The mean observation period was 9.10 ± 5.03 months (maximal, 18 months). Analysis of the survival of the patients with acute coronary syndrome that carried allele A has demonstrated that the presence of IL10 gene polymorphism G(−1082)A is associated with more frequent poor outcomes as compared with GG genotype. The survival time to endpoint for the carriers of GA and AA genotypes was 11.68 ± 0.67 months versus 12.69 ± 0.65 months for the carriers of GG genotype in IL10 gene (χ2 = 4.13, p = 0.042). As for the IL6 gene polymorphism G(−174)C, survival rate analysis did not detect any significant association with the risk for poor outcome. However, joint analysis of these polymorphisms in both genes has demonstrated that characteristic of the patients with acute coronary syndrome that carry GG genotype of IL6 gene and GA and AA genotypes of IL10 is a higher rate of poor outcomes (time to endpoint, 11.01 ± 1.24 months) as compared with the carriers of IL6 gene CC and CG genotypes and IL10 gene GG genotype (time to endpoint, 13.28 ± 0.83 months (ξ2 = 10.23, p = 0.017). These data suggest that the genes IL6 and IL10, whose products are involved in the control of inflammatory response, play an important role by increasing the probability of poor outcomes in the patients with acute coronary syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAD:

coronary artery disease

MI:

myocardial infarction

UA:

unstable angina

ACS:

acute coronary syndrome

CVDs:

cardiovascular diseases

IL6 :

the gene coding for interleukin-6

IL10 :

the gene coding for interleukin-10

LDL:

low density lipoproteins

IS:

ischemic stroke

AH:

arterial hypertension

References

  1. Nazarenko G.I., Kleimenova E.B., Gushchina N.N. 2009. Studies on genetic markers and traditional risk factors of ischemic heart disease. Ross. Med. Vesti. 14, 47–54.

    Google Scholar 

  2. Oganov R.G. Pogosova G.V., Koltunov I.E., Belova Yu.S., Vygodin V.A. 2008. RELIF—REgulyarnoe Lechenie I proFilaktika (regular treatment and prophylaxis)—a key to improving the situation with cardiovascular diseases in Russia: Results of a Russian muilticenter study, part 3. Kardiologiya. 48, 46–53.

    CAS  PubMed  Google Scholar 

  3. Agapkina Y.V., Nikitin A.G., Brovkin A.N., et al. 2010. Polymorphic markers G(−455)A of gene FGB and C(−654)T of gene PROC and genetic predisposition to unfavorable outcomes in patients undergoing acute coronary syndrome. Mol. Biol. 44 (in press).

  4. Paoletti R., Gotto A.M., Hajjar D. P. 2004. Inflammation in atherosclerosis and implications for therapy. Circulation. 109, III-20–III-26.

    Article  Google Scholar 

  5. Titov V.N. 1999. Association of atherosclerosis and ion-flammation: Specificity of atherosclerosis as an inflammatory process. Ross. Kardiol. Zh. 5, 24–29.

    Google Scholar 

  6. Berliner J.A., Navab M., Fogelman A.M., et al. 1995. Atherosclerosis: Basic mechanisms: Oxidation, inflammation, and genetics. Circulation. 91, 2488–2496.

    CAS  PubMed  Google Scholar 

  7. Kavsak P.A., Newman A.M., Ko D.T., MacRae A.R., Jaffe A.S. 2010. The use of a cytokine panel to define the long-term risk stratification of heart failure/death in patients presenting with chest pain to the emergency department. Clin. Biochem. 43, 505–507.

    Article  CAS  PubMed  Google Scholar 

  8. Shavrin A., Khovaeva Ya., Chereshnev V., Golovskoy B. 2009. Inflammation markers in the course of atherosclerosis development. Kardiovask. Terap. Profilakt. 8, 13–15.

    Google Scholar 

  9. Zakirova N.E., Khafizov N.Kh., Karamova I.M., Zakirova A.N., Oganov R.G. 2007. Illunoinflammatory reactions in ischemic heart disease. Ratsion. Farmakoterap. Kardiol. 3, 16–19.

    Google Scholar 

  10. Oshchepkova E.V., Dmitriev V.A., Titov V.N., Rogoza A.N., Masenko V.P. 2007. Indices of unspecific inflammation in patients with hypertension disease. Terapevt. Arkhiv. 79, 18–25.

    CAS  Google Scholar 

  11. Vostrikova N., Fedorov D., Mamaev A., et al. 2009. Markers of inflammation markers (C-reactive protein and interleukin 6) in arterial hypertension. Sib. Med. Zh. 24, 33–34.

    Google Scholar 

  12. Papanicolaou D.A., Wilder R.L., Manolagas S.C., Chrousos G.P. 1998. The pathophysiologic roles of interleukin-6 in human disease. Ann. Intern. Med. 128(2), 127–137.

    CAS  PubMed  Google Scholar 

  13. Aker S., Bantis C., Reis P., et al. 2009. Influence of interleukin-6 G-174C gene polymorphism on coronary artery disease, cardiovascular complications and mortality in dialysis patients. Nephrol. Dial. Transplant. 24, 2847–2851.

    Article  CAS  PubMed  Google Scholar 

  14. Sie M.P.S., Mattace-Raso F.U.S., Uitterlinden A.G., et al. 2008. The interleukin-6-174 G/C promoter polymorphism and arterial stiffness: The Rotterdam Study. Vasc. Health. Risk. Manag. 4, 863–869.

    CAS  PubMed  Google Scholar 

  15. Manginas A., Tsiavou A., Chaidaroglou A., et al. 2008. Inflammatory cytokine gene variants in coronary artery disease patients in Greece. Coronary Artery Dis. 19, 575–582.

    Article  Google Scholar 

  16. Shevchenko A., Golovanova O., Konenkov V., et al. 2009. Analysis of relationship between IL6 (−174 G/C) gene polymorphism and classic risk factors in patients with a history of acute myocardial infarction. Med. Immunol. 11, 557–566.

    Google Scholar 

  17. Li J., Guo Y., Yang Y. 2005. Enhancing anti-inflammatory cytokine IL-10 may be beneficial for acute coronary syndrome. Med. Hypoth. 65, 103–106.

    Article  CAS  Google Scholar 

  18. Tedgui A., Mallat Z. 2001. Anti-inflammatory mechanisms in the vascular wall. Circ. Res. 88, 877–887.

    Article  CAS  PubMed  Google Scholar 

  19. Mallat Z., Besnard S., Duriez M., et al. 1999. Protective role of interleukin-10 in atherosclerosis. Circ. Res. 85, e17–e24.

    CAS  PubMed  Google Scholar 

  20. Smith D.A., Irving S.D., Sheldon J., Cole D., Kaski J.C. 2001. Serum levels of the antiinflammatory cytokine interleukin-10 are decreased in patients with unstable angina. Circulation. 104, 746–749.

    Article  CAS  PubMed  Google Scholar 

  21. Reuss E., Fimmers R., Kruger A., et al. 2002. Differential regulation of interleukin-10 production by genetic and environmental factors: A twin study. Genes Immunol. 3, 407–413.

    Article  CAS  Google Scholar 

  22. Suárez A., Castro P., Alonso R., Mozo L., Gutiérrez C. 2003. Interindividual variations in constitutive interleukin-10 messenger RNA and protein levels and their association with genetic polymorphisms. Transplantation. 75, 711–717.

    Article  PubMed  Google Scholar 

  23. Turner D.M., Williams D.M., Sankaran D., et al. 1997. An investigation of polymorphism in the interleukin-10 gene promoter. Eur. J. Immunogenet. 24, 1–8.

    CAS  PubMed  Google Scholar 

  24. Schippers E.F., van’t Veer C., van Voorden S., et al. 2005. IL-10 and toll-like receptor-4 polymorphisms and the in vivo and ex vivo response to endotoxin. Cytokine. 29, 215–228.

    Article  CAS  PubMed  Google Scholar 

  25. Heiskanen M., Kähönen M., Hurme M., et al. 2010. Polymorphism in the IL10 promoter region and early markers of atherosclerosis: The cardiovascular risk in young Finns study. Atherosclerosis. 208, 190–196

    Article  CAS  PubMed  Google Scholar 

  26. Johns M.B., Paulus-Thomas J.E. 1989. Purification of human genomic DNA from whole blood using sodium perchlorate in place of phenol. Anal. Biochem. 180, 276–278.

    Article  CAS  PubMed  Google Scholar 

  27. Wang P., Wu P., Siegel M.I., Egan R.W., Billah M.M. 1995. Interleukin (IL)-10 inhibits nuclear factor B (NFB) activation in human monocytes. J. Biol. Chem. 270, 9558–9563.

    Article  CAS  PubMed  Google Scholar 

  28. Pinderski Oslund L.J., Hedrick C.C., Olvera T., et al. 1999. Interleukin-10 blocks atherosclerotic events in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol. 19, 2847–2853.

    CAS  PubMed  Google Scholar 

  29. Von Der Thüsen J.H., Kuiper J., Fekkes M.L., et al. 2001. Attenuation of atherogenesis by systemic and local adenovirus-mediated gene transfer of interleukin-10 in LDLr−/− mice. FASEB J. 15, 2730–2732.

    Google Scholar 

  30. Pinderski L.J., Fischbein M.P., Subbanagounder G., et al. 2002. Overexpression of interleukin-10 by activated T lymphocytes inhibits atherosclerosis in LDL receptor-deficient mice by altering lymphocyte and macrophage phenotypes. Circ. Res. 90, 1064–1071.

    Article  CAS  PubMed  Google Scholar 

  31. Malarstig A., Eriksson P., Hamsten A., et al. 2008. Raised interleukin-10 is an indicator of poor outcome and enhanced systemic inflammation in patients with acute coronary syndrome. Heart. 94, 724–729.

    Article  CAS  PubMed  Google Scholar 

  32. Mys-liwska J., Wieckiewicz J., Hak L., et al. 2006. Interleukin 6 polymorphism corresponds to the number of severely stenosed coronary arteries. Eur. Cytokine Netw. 17, 181–188.

    CAS  Google Scholar 

  33. Fishman D., Faulds G., Jeffery R., et al. 1998. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J. Clin. Invest. 102, 1369–1376.

    Article  CAS  PubMed  Google Scholar 

  34. Rivera-Chavez F.A., Peters-Hybki D.L., Barber R.C., O’Keefe G.E. 2003. Interleukin-6 promoter haplotypes and interleukin-6 cytokine responses. Shock. 20, 218–223.

    Article  CAS  PubMed  Google Scholar 

  35. Terry C.F., Loukaci V., Green F.R. 2000. Cooperative influence of genetic polymorphisms on interleukin 6 transcriptional regulation. J. Biolog. Chem. 275, 18138–18144.

    Article  CAS  Google Scholar 

  36. Adams D.H., Shaw S. 1994. Leucocyte-endothelial interactions and regulation of leucocyte migration. Lancet. 343, 831–836.

    Article  CAS  PubMed  Google Scholar 

  37. Zhou X., Stemme S., Hansson G.K. 1996. Evidence for a local immune response in atherosclerosis. CD4+ T cells infiltrate lesions of apolipoprotein-E-deficient mice. Am. J. Pathol. 149, 359–366.

    CAS  PubMed  Google Scholar 

  38. Huber S.A., Sakkinen P., Conze D., Hardin N., Tracy R. 1999. Interleukin-6 exacerbates early atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 19, 2364–2367.

    CAS  PubMed  Google Scholar 

  39. Heinisch R.H., Zanetti C.R., Comin F., et al. 2005. Serial changes in plasma levels of cytokines in patients with coronary artery disease. Vasc. Health Risk Manag. 1, 245–250.

    CAS  PubMed  Google Scholar 

  40. Pai J.K., Mukamal K.J., Rexrode K.M., Rimm E.B. 2008. C-reactive protein (CRP) gene polymorphisms, CRP levels, and risk of incident coronary heart disease in two nested case-control studies. PLoS ONE. 3, e1395.

    Article  PubMed  Google Scholar 

  41. Basso F., Lowe G.D., Rumley A., McMahon A.D., Humphries S.E. 2002. Interleukin-6-174G>C polymorphism and risk of coronary heart disease in West of Scotland coronary prevention study (WOSCOPS). Arterioscler. Thromb. Vasc. Biol. 22, 599–604.

    Article  CAS  PubMed  Google Scholar 

  42. Antonicelli R., Olivieri F., Bonafè M., et al. 2005. The interleukin-6-174 G>C promoter polymorphism is associated with a higher risk of death after an acute coronary syndrome in male elderly patients. Int. J. Cardiol. 103, 266–271.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Blagodatskikh.

Additional information

Original Russian Text © K.A. Blagodatskikh, M.A. Evdokimova, Yu.V. Agapkina, A.G. Nikitin, A.N. Brovkin, A.A. Pushkov, E.G. Blagodatskikh, O.Yu. Kudryashova, V.S. Osmolovskaya, L.O. Minushkina, M.S. Kochkina, N.D. Selezneva, E.N. Dankovtseva, O.S. Chumakova, T.N. Baklanova, P.A. Talyzin, N.E. Reznichenko, O.P. Donetskaya, S.N. Tereshchenko, E.S. Krasil’nikova, N.A. Dzhaiani, E.V. Akatova, M.G. Glezer, A.S. Galyavich, V.B. Zakirova, N.A. Koziolova, I.V. Timofeeva, A.V. Yagoda, O.I. Boeva, L.I. Katel’nitskaya, E.V. Khorolets, S.V. Shlyk, E.G. Volkova, M.P. Margaryan, I.O. Guz’, V.O. Konstantinov, N.V. Timofeeva, B.A. Sidorenko, D.A. Zateishchikov, V.V. Nosikov, 2010, published in Molekulyarnaya Biologiya, 2010, Vol. 44, No. 5, pp. 839–846.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blagodatskikh, K.A., Evdokimova, M.A., Agapkina, Y.V. et al. The polymorphisms G(−174)C in IL6 gene and G(−1082)A in IL10 gene are associated with poor outcomes in patients with acute coronary syndrome. Mol Biol 44, 741–747 (2010). https://doi.org/10.1134/S0026893310050092

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893310050092

Key words

Navigation