Skip to main content
Log in

Core promoters as an example of the effect of whole-genome information on the evolution of views on molecular mechanisms of vital activity

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Complete DNA sequences of many animal genomes combined with the information on new classes of regulatory elements within the regions conventionally viewed as intergenic led to a revision of the concept of the genome as a linear arrangement of genes with their promoters and distinct intergenic regions. Instead, there emerged a concept of the so-called transcriptional landscape with almost no boundaries between what was commonly considered to be genes. The concept of the core promoter as the main cis-acting transcriptional element also changed dramatically. Knowledge of the mechanisms sustaining the function of this central element of the cell transcription system underlies the understanding of metazoan transcription in general. The review attempts to summarize the data obtained for core promoters in the past decade and to trace the evolution of the core promoter concept. This evolution led finally to the understanding that core promoters play an active role in transcription regulation rather than just provide a passive scaffold for assembling preinitiation transcription complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Domansky A.N., Kopantzev E.P., Snezhkov E.V., Lebedev Y.B., Leib-Mosch C., Sverdlov E.D. 2000. Solitary HERV-K LTRs possess bi-directional promoter activity and contain a negative regulatory element in the U5 region. FEBS Lett. 472, 191–195.

    Article  CAS  PubMed  Google Scholar 

  2. Sugimoto M., Miyata S. 2002. Functional property of von Willebrand factor under flowing blood. Int. J. Hematol. 75, 19–24.

    Article  CAS  PubMed  Google Scholar 

  3. Trinklein N.D., Aldred S.F., Hartman S.J., Schroeder D.I., Otillar R.P. Myers R.M. 2004. An abundance of bidirectional promoters in the human genome. Genome Res. 14, 62–66.

    Article  CAS  PubMed  Google Scholar 

  4. Piontkivska H., Yang M.Q., Larkin D.M., Lewin H.A., Reecy J., Elnitski L. 2009. Cross-species mapping of bidirectional promoters enables prediction of unannotated 5′ UTRs and identification of species-specific transcripts. BMC Genomics. 10, 189.

    Article  PubMed  Google Scholar 

  5. Berretta J., Morillon A. 2009. Pervasive transcription constitutes a new level of eukaryotic genome regulation. EMBO Rep. 10, 973–982.

    Article  CAS  PubMed  Google Scholar 

  6. Kapranov P., Willingham A.T., Gingeras T.R. 2007. Genome-wide transcription and the implications for genomic organization. Nature Rev. Genet. 8, 413–423.

    Article  CAS  PubMed  Google Scholar 

  7. Sandelin A., Carninci P., Lenhard B., Ponjavic J., Hayashizaki Y., Hume D.A. 2007. Mammalian RNA polymerase II core promoters: Insights from genomewide studies. Nature Rev. Genet. 8, 424–436.

    Article  CAS  PubMed  Google Scholar 

  8. Jacquier A. 2009. The complex eukaryotic transcriptome: Unexpected pervasive transcription and novel small RNAs. Nature Rev. Genet. 10, 833–844.

    Article  CAS  PubMed  Google Scholar 

  9. Butler J.E., Kadonaga J. T. 2002. The RNA polymerase II core promoter: A key component in the regulation of gene expression. Genes Dev. 16, 2583–2592.

    Article  CAS  PubMed  Google Scholar 

  10. Casamassimi A., Napoli C. 2007. Mediator complexes and eukaryotic transcription regulation: An overview. Biochimie. 89, 1439–1446.

    Article  CAS  PubMed  Google Scholar 

  11. Hahn S. 2004. Structure and mechanism of the RNA polymerase II transcription machinery. Nature Struct. Mol. Biol. 11, 394–403.

    Article  CAS  Google Scholar 

  12. Kornberg R.D. 2007. The molecular basis of eukaryotic transcription. Proc. Natl. Acad. Sci. USA. 104, 12955–12961.

    Article  CAS  PubMed  Google Scholar 

  13. Muller F., Demeny M.A., Tora L. 2007. New problems in RNA polymerase II transcription initiation: Matching the diversity of core promoters with a variety of promoter recognition factors. J. Biol. Chem. 282, 14685–14689.

    Article  PubMed  Google Scholar 

  14. Thomas M.C., Chiang C.M. 2006. The general transcription machinery and general cofactors. Crit. Rev. Biochem. Mol. Biol. 41, 105–178.

    Article  CAS  PubMed  Google Scholar 

  15. Venters B.J., Pugh B.F. 2009. How eukaryotic genes are transcribed. Crit. Rev. Biochem. Mol. Biol. 44, 117–141.

    CAS  PubMed  Google Scholar 

  16. Maston G.A., Evans S.K., Green M.R. 2006. Transcriptional regulatory elements in the human genome. Annu. Rev. Genomics Hum. Genet. 7, 29–59.

    Article  CAS  PubMed  Google Scholar 

  17. Sikorski T.W., Buratowski S. 2009. The basal initiation machinery: Beyond the general transcription factors. Curr. Opin. Cell Biol. 21, 344–351.

    Article  CAS  PubMed  Google Scholar 

  18. Core L.J., Waterfall J.J., Lis J. T. 2008. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science. 322, 1845–1848.

    Article  CAS  PubMed  Google Scholar 

  19. Lee W., Tillo D., Bray N., Morse R.H., Davis R.W., Hughes T.R., Nislow C. 2007. A high-resolution atlas of nucleosome occupancy in yeast. Nature Genet. 39, 1235–1244.

    Article  CAS  PubMed  Google Scholar 

  20. Arndt K.M., Kane C.M. 2003. Running with RNA polymerase: eukaryotic transcript elongation. Trends Genet. 19, 543–550.

    Article  CAS  PubMed  Google Scholar 

  21. Hargreaves D.C., Horng T., Medzhitov R. 2009. Control of inducible gene expression by signal-dependent transcriptional elongation. Cell. 138, 129–145.

    Article  CAS  PubMed  Google Scholar 

  22. West S., Proudfoot N.J. 2009. Transcriptional termination enhances protein expression in human cells. Mol. Cell. 33, 354–364.

    Article  CAS  PubMed  Google Scholar 

  23. Fuda N.J., Ardehali M.B., Lis J. T. 2009. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature. 461, 186–192.

    Article  CAS  PubMed  Google Scholar 

  24. Seila A.C., Calabrese J.M., Levine S.S., Yeo G.W., Rahl P.B., Flynn R.A., Young R.A. Sharp P.A. 2008. Divergent transcription from active promoters. Science. 322, 1849–1851.

    Article  CAS  PubMed  Google Scholar 

  25. Taft R.J., Glazov E.A., Cloonan N., Simons C., Stephen S., Faulkner G.J., Lassmann T., Forrest A.R., Grimmond S.M., Schroder K., Irvine K., Arakawa T., Nakamura M., Kubosaki A., Hayashida K., Kawazu C., Murata M., Nishiyori H., Fukuda S., Kawai J., Daub C.O., Hume D.A., Suzuki H., Orlando V., Carninci P., Hayashizaki Y., Mattick J. S. 2009. Tiny RNAs associated with transcription start sites in animals. Nature Genet. 41, 572–578.

    Article  CAS  PubMed  Google Scholar 

  26. He Y., Vogelstein B., Velculescu V.E., Papadopoulos N., Kinzler K.W. 2008. The antisense transcriptomes of human cells. Science. 322, 1855–1857.

    Article  CAS  PubMed  Google Scholar 

  27. Buratowski S. 2008. Transcription. Gene expression-where to start? Science. 322, 1804–1805.

    Article  CAS  PubMed  Google Scholar 

  28. Ross J., Bottardi S., Bourgoin V., Wollenschlaeger A., Drobetsky E., Trudel M., Milot E. 2009. Differential requirement of a distal regulatory region for pre-initiation complex formation at globin gene promoters. Nucleic Acids Res. 37, 5295–5308.

    Article  CAS  PubMed  Google Scholar 

  29. Szutorisz H., Dillon N., Tora L. 2005. The role of enhancers as centres for general transcription factor recruitment. Trends Biochem. Sci. 30, 593–599.

    Article  CAS  PubMed  Google Scholar 

  30. Juven-Gershon T., Hsu J.Y., Theisen J.W. Kadonaga J.T. 2008. The RNA polymerase II core promoter: The gateway to transcription. Curr. Opin. Cell Biol. 20, 253–259.

    Article  CAS  PubMed  Google Scholar 

  31. Kawaji H., Kasukawa T., Fukuda S., Katayama S., Kai C., Kawai J., Carninci P. Hayashizaki Y. 2006. CAGE Basic/Analysis Databases: The CAGE resource for comprehensive promoter analysis. Nucleic Acids Res. 34, D632–D636.

    Article  CAS  PubMed  Google Scholar 

  32. de Hoon M., Hayashizaki Y. 2008. Deep cap analysis gene expression (CAGE): Genome-wide identification of promoters, quantification of their expression, and network inference. Biotechniques. 44, 627–628, 630, 632.

    Article  PubMed  Google Scholar 

  33. Gershenzon N.I., Ioshikhes I. P. 2005. Synergy of human Pol II core promoter elements revealed by statistical sequence analysis. Bioinformatics. 21, 1295–1300.

    Article  CAS  PubMed  Google Scholar 

  34. Suzuki M.M., Bird A. 2008. DNA methylation landscapes: Provocative insights from epigenomics. Nature Rev. Genet. 9, 465–476.

    Article  CAS  PubMed  Google Scholar 

  35. Davuluri R.V., Grosse I., Zhang M.Q. 2001. Computational identification of promoters and first exons in the human genome. Nature Genet. 29, 412–417.

    Article  CAS  PubMed  Google Scholar 

  36. Saxonov S., Berg P., Brutlag D.L. 2006. A genomewide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc. Natl. Acad. Sci. USA. 103, 1412–1417.

    Article  CAS  PubMed  Google Scholar 

  37. Ramirez-Carrozzi V.R., Braas D., Bhatt D.M., Cheng C.S., Hong C., Doty K.R., Black J.C., Hoffmann A., Carey M., Smale S. T. 2009. A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell. 138, 114–128.

    Article  CAS  PubMed  Google Scholar 

  38. Cairns B.R. 2009. The logic of chromatin architecture and remodelling at promoters. Nature. 461, 193–198.

    Article  CAS  PubMed  Google Scholar 

  39. Jiang C., Pugh B.F. 2009. Nucleosome positioning and gene regulation: advances through genomics. Nature Rev. Genet. 10, 161–172.

    Article  CAS  PubMed  Google Scholar 

  40. Singh H. 2009. Teeing up transcription on CpG islands. Cell. 138, 14–16.

    Article  CAS  PubMed  Google Scholar 

  41. Smale S.T., Kadonaga J. T. 2003. The RNA polymerase II core promoter. Annu. Rev. Biochem. 72, 449–479.

    Article  CAS  PubMed  Google Scholar 

  42. Baek D., Davis C., Ewing B., Gordon D., Green P. 2007. Characterization and predictive discovery of evolutionarily conserved mammalian alternative promoters. Genome Res. 17, 145–155.

    Article  CAS  PubMed  Google Scholar 

  43. Heintzman N.D., Hon G.C., Hawkins R.D., Kheradpour P., Stark A., Harp L.F., Ye Z., Lee L.K., Stuart R.K., Ching C.W., Ching K.A., Antosiewicz-Bourget J.E., Liu H., Zhang X., Green R.D., Lobanenkov V.V., Stewart R., Thomson J.A., Crawford G.E., Kellis M., Ren B. 2009. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature. 459, 108–112.

    Article  CAS  PubMed  Google Scholar 

  44. Davuluri R.V., Suzuki Y., Sugano S., Plass C., Huang T.H. 2008. The functional consequences of alternative promoter use in mammalian genomes. Trends Genet. 24, 167–177.

    Article  CAS  PubMed  Google Scholar 

  45. Singer G.A., Wu J., Yan P., Plass C., Huang T.H., Davuluri R. V. 2008. Genome-wide analysis of alternative promoters of human genes using a custom promoter tiling array. BMC Genomics. 9, 349.

    Article  PubMed  Google Scholar 

  46. Weigmann A., Corbeil D., Hellwig A. Huttner W.B. 1997. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of nonepithelial cells. Proc. Natl. Acad. Sci. USA. 94, 12425–12430.

    Article  CAS  PubMed  Google Scholar 

  47. Shmelkov S.V., Jun L., St Clair R., McGarrigle D., Derderian C.A., Usenko J.K., Costa C., Zhang F., Guo X. Rafii S. 2004. Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC133. Blood. 103, 2055–2061.

    Article  CAS  PubMed  Google Scholar 

  48. Pleshkan V.V., Vinogradova T.V., Sverdlov E.D. 2008. Methylation of the prominin 1 TATA-less main promoters and tissue specificity of their transcript content. Biochim. Biophys. Acta. 1779, 599–605.

    CAS  PubMed  Google Scholar 

  49. Carninci P., Kasukawa T., Katayama S., et al. 2005. The transcriptional landscape of the mammalian genome. Science. 309, 1559–1563.

    Article  CAS  PubMed  Google Scholar 

  50. Narlikar G.J., Fan H.Y., Kingston R.E. 2002. Cooperation between complexes that regulate chromatin structure and transcription. Cell. 108, 475–487.

    Article  CAS  PubMed  Google Scholar 

  51. Becker P.B., Horz W. 2002. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem. 71, 247–273.

    Article  CAS  PubMed  Google Scholar 

  52. Saha A., Wittmeyer J., Cairns B.R. 2006. Chromatin remodelling: The industrial revolution of DNA around histones. Nat. Rev. Mol. Cell Biol. 7, 437–447.

    Article  CAS  PubMed  Google Scholar 

  53. Stein A., Takasuka T.E., Collings C.K. 2010. Are nucleosome positions in vivo primarily determined by histone-DNA sequence preferences? Nucleic Acids Res. 38, 709–719.

    Article  CAS  PubMed  Google Scholar 

  54. Weiner A., Hughes A., Yassour M., Rando O.J., Friedman N. 2010. High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. Genome Res. 20, 90–100.

    Article  CAS  PubMed  Google Scholar 

  55. Lee C.K., Shibata Y., Rao B., Strahl B.D., Lieb J.D. 2004. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nature Genet. 36, 900–905.

    Article  CAS  PubMed  Google Scholar 

  56. Yuan G.C., Liu Y.J., Dion M.F., Slack M.D., Wu L.F., Altschuler S.J., Rando O.J. 2005. Genome-scale identification of nucleosome positions in S. cerevisiae. Science. 309, 626–630.

    Article  CAS  PubMed  Google Scholar 

  57. Mavrich T.N., Jiang C., Ioshikhes I.P., Li X., Venters B.J., Zanton S.J., Tomsho L.P., Qi J., Glaser R.L., Schuster S.C., Gilmour D.S., Albert I., Pugh B.F. 2008. Nucleosome organization in the Drosophila genome. Nature. 453, 358–362.

    Article  CAS  PubMed  Google Scholar 

  58. Tirosh I., Barkai N. 2008. Two strategies for gene regulation by promoter nucleosomes. Genome Res. 18, 1084–1091.

    Article  CAS  PubMed  Google Scholar 

  59. Field Y., Kaplan N., Fondufe-Mittendorf Y., Moore I.K., Sharon E., Lubling Y., Widom J., Segal E. 2008. Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comput. Biol. 4, e1000216.

    Article  PubMed  Google Scholar 

  60. Basehoar A.D., Zanton S.J., Pugh B.F. 2004. Identification and distinct regulation of yeast TATA box-containing genes. Cell. 116, 699–709.

    Article  CAS  PubMed  Google Scholar 

  61. Huisinga K.L., Pugh B.F. 2004. A genome-wide house-keeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol. Cell. 13, 573–585.

    Article  CAS  PubMed  Google Scholar 

  62. Dion M.F., Kaplan T., Kim M., Buratowski S., Friedman N., Rando O.J. 2007. Dynamics of replication-independent histone turnover in budding yeast. Science. 315, 1405–1408.

    Article  CAS  PubMed  Google Scholar 

  63. Rufiange A., Jacques P.E., Bhat W., Robert F., Nourani A. 2007. Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3 K56 acetylation and Asf1. Mol. Cell. 27, 393–405.

    Article  CAS  PubMed  Google Scholar 

  64. Mito Y., Henikoff J.G., Henikoff S. 2007. Histone replacement marks the boundaries of cis-regulatory domains. Science. 315, 1408–1411.

    Article  CAS  PubMed  Google Scholar 

  65. Lee S., Kohane I., Kasif S. 2005. Genes involved in complex adaptive processes tend to have highly conserved upstream regions in mammalian genomes. BMC Genomics. 6, 168.

    Article  PubMed  Google Scholar 

  66. Tirosh I., Weinberger A., Carmi M., Barkai N. 2006. A genetic signature of interspecies variations in gene expression. Nature Genet. 38, 830–834.

    Article  CAS  PubMed  Google Scholar 

  67. Liang H., Lin Y.S., Li W.H. 2008. Fast evolution of core promoters in primate genomes. Mol. Biol. Evol. 25, 1239–1244.

    Article  CAS  PubMed  Google Scholar 

  68. Keightley P.D., Lercher M.J., Eyre-Walker A. 2005. Evidence for widespread degradation of gene control regions in hominid genomes. PLoS Biol. 3, e42.

    Article  PubMed  Google Scholar 

  69. Taylor M.S., Kai C., Kawai J., Carninci P., Hayashizaki Y., Semple C.A. 2006. Heterotachy in mammalian promoter evolution. PLoS Genet. 2, e30.

    Article  PubMed  Google Scholar 

  70. Okamura K., Nakai K. 2008. Retrotransposition as a source of new promoters. Mol. Biol. Evol. 25, 1231–1238.

    Article  CAS  PubMed  Google Scholar 

  71. Bourque G., Leong B., Vega V.B., Chen X., Lee Y.L., Srinivasan K.G., Chew J.L., Ruan Y., Wei C.L., Ng H.H., Liu E.T. 2008. Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res. 18, 1752–1762.

    Article  CAS  PubMed  Google Scholar 

  72. Kazazian H.H., Jr. 2004. Mobile elements: Drivers of genome evolution. Science. 303, 1626–1632.

    Article  CAS  PubMed  Google Scholar 

  73. Cordaux R., Batzer M.A. 2009. The impact of retrotransposons on human genome evolution. Nature Rev. Genet. 10, 691–703.

    Article  CAS  PubMed  Google Scholar 

  74. Sverdlov E.D. 2000. Retroviruses and primate evolution. Bioessays. 22, 161–171.

    Article  CAS  PubMed  Google Scholar 

  75. Feschotte C. 2008. Transposable elements and the evolution of regulatory networks. Nature Rev. Genet. 9, 397–405.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Vinogradova.

Additional information

Original Russian Text © E.D. Sverdlov, T.V. Vinogradova, 2010, published in Molekulyarnaya Biologiya, 2010, Vol. 44, No. 5, pp. 773–785.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sverdlov, E.D., Vinogradova, T.V. Core promoters as an example of the effect of whole-genome information on the evolution of views on molecular mechanisms of vital activity. Mol Biol 44, 682–692 (2010). https://doi.org/10.1134/S002689331005002X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689331005002X

Key words

Navigation