Skip to main content
Log in

Isolation, sequence identification and expression profile of three novel genes Rab2A, Rab3A and Rab7A from black-boned sheep (Ovis aries)

  • Genomics. Transcriptomics. Proteomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Complete coding sequences of three Black-boned sheep (Ovis aries) genes Rab2A, Rab3A and Rab7A were amplified using reverse transcription polymerase chain reaction (RT-PCR) based on the conserved sequence information of cattle or other mammals known to be highly homologous to sheep ESTs. The Black-boned sheep Rab2A gene encodes a protein of 226 amino acids which contains the conserved putative RabL2 domain and is highly homologous to the Rab2A proteins of seven other species—cattle (96%), human (83%), Sumatran orangutan (82%), rat (81%), mouse (80%), African clawed frog (72%) and zebrafish (71%). The Black-boned sheep Rab3A gene encodes a protein of 220 amino acids that contains the conserved putative Rab3 domain and is very similar to the Rab3A proteins of four species—cattle (99%), African clawed frog (99%), Western clawed frog (98%) and zebrafish (95%). And the Black-boned sheep Rab7A gene encodes a protein of 207 amino acids that contains the conserved putative Rab7 domain and has high homology with the Rab7A proteins of six other species—human (99%), dog (99%), Sumatran orangutan (99%), zebrafish (97%), rabbit (97%) and African clawed frog (96%). Analysis of the phylogenetic tree has demonstrated that the Black-boned sheep Rab2A, Rab3A and Rab7A proteins share a common ancestor and the tissue expression analysis has shown that the corresponding genes are expressed in a range of tissues including leg muscle, kidney, skin, longissimus dorsi muscle, spleen, heart and liver. Our experiment is the first to provide the primary foundation for a further insight into these three sheep genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferro-Novick S., Jahn R. 1994. Vesicle fusion from yeast to man. Nature. 370, 191–193.

    Article  CAS  PubMed  Google Scholar 

  2. Fischer von Mollard G., Stahl B., Li C., SSüdhof T.C., Jahn R. 1994. Rab proteins in regulated exocytosis. Trends Biochem. Sci. 19, 164–168.

    Article  Google Scholar 

  3. Mizoguchi A., Kim S., Ueda T., Takai Y. 1989. Tissue distribution of smg p25A, a ras p21-like GTP-binding protein, studied by use of a specific monoclonal antibody. Biochem. Biophys. Res. Commun. 162, 1438–1455.

    Article  CAS  PubMed  Google Scholar 

  4. Takai Y., Kaibuchi K., Kikuchi A., Kawata M. 1992. Small GTP-binding proteins. Int. Rev. Cytol. 133, 187–230.

    Article  CAS  PubMed  Google Scholar 

  5. Simons K., Zerial M. 1993. Rab proteins and the road maps for intracellular transport. Neuron. 11, 789–799.

    Article  CAS  PubMed  Google Scholar 

  6. Tisdale E.J., Bourne J.R., Khosravi-Far R., Der C.J., Balch W.E. 1992. GTP-binding mutants of rab1 and rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex. J. Cell. Biol. 119, 749–761.

    Article  CAS  PubMed  Google Scholar 

  7. Mountjoy J.R., Xu W., McLeod D., Hyndman D., Oko R. 2008. RAB2A: A major subacrosomal protein of bovine spermatozoa implicated in acrosomal biogenesis. Biol. Reprod. 79, 223–232.

    Article  CAS  PubMed  Google Scholar 

  8. Darchen F., Zahraoui A., Hammel F., Monteils M.P., Tavitian A., Scherman D. 1990. Association of the GTP-binding protein Rab3A with bovine adrenal chromaffin granules. Proc. Natl. Acad. Sci. USA. 87, 5692–5696.

    Article  CAS  PubMed  Google Scholar 

  9. Darchen F., Senyshyn J., Brondyk W., Taatjes D.J., Holz R.W., Henry J.P., Denizot J.P., Macara I.G. 1995. The GTPase Rab3a is associated with large dense core vesicles in bovine chromaffin cells and rat PC12 cells. J. Cell. Sci. 108, 1639–1649.

    CAS  PubMed  Google Scholar 

  10. Kawabe H., Sakisaka T., Yasumi M., Shingai T., Izumi G., Nagano F., Deguchi-Tawarada M., Takeuchi M., Nakanishi H., Takai Y. 2003. A novel rabconnectin-3- binding protein that directly binds a GDP/GTP exchange protein for Rab3A small G protein implicated in Ca2+-dependent exocytosis of neurotransmitter. Genes Cells. 8, 537–546.

    Article  CAS  PubMed  Google Scholar 

  11. Baldini G., Hohl T., Lin H.Y., Lodish H.F. 1992. Cloning of a Rab3 isotype predominantly expressed in adipocytes. Proc. Natl. Acad. Sci. USA. 89, 5049–5052.

    Article  CAS  PubMed  Google Scholar 

  12. Geppert M., Bolshakov V.Y., Siegelbaum S.A., Takei K., De Camilli P., Hammer R.E., Sudhof T.C. 1994. The role of Rab3A in neurotransmitter release. Nature. 369, 493–497.

    Article  CAS  PubMed  Google Scholar 

  13. Holz R.W., Brondyk W.H., Senter R.A., Kuizon L., Macara I.G. 1994. Evidence for the involvement of Rab3A in Ca2+-dependent exocytosis from adrenal chromaffin cells. J. Biol. Chem. 269, 10229–10234.

    CAS  PubMed  Google Scholar 

  14. Anitei M., Cowan A.E., Pfeiffer S.E., Bansal R. 2009. Role for Rab3a in oligodendrocyte morphological differentiation. J. Neurosci. Res. 87, 342–352.

    Article  CAS  PubMed  Google Scholar 

  15. Laurent O., Bruckert F., Adessi C., Satre M. 1998. In vitro reconstituted Dictyostelium discoideum early endosome fusion is regulated by Rab7 but proceeds in the absence of ATP-Mg2+ from the bulk solution. J. Biol. Chem. 273, 793–799.

    Article  CAS  PubMed  Google Scholar 

  16. Buczynski G., Bush J., Zhang L., Rodriguez-Paris J., Cardelli J. 1997. Evidence for a recycling role for Rab7 in regulating a late step in endocytosis and in retention of lysosomal enzymes in Dictyostelium discoideum. Mol. Biol. Cell. 8, 1343–1360.

    CAS  PubMed  Google Scholar 

  17. Ceresa B.P., Bahr S.J. 2006. Rab7 activity affects epidermal growth factor:epidermal growth factor receptor degradation by regulating endocytic trafficking from the late endosome. J. Biol. Chem. 281, 1099–1106.

    Article  CAS  PubMed  Google Scholar 

  18. Kawakami A., Sakane F., Imai S., Yasuda S., Kai M., Kanoh H., Jin H.Y., Hirosaki K., Yamashita T, Fisher D.E., Jimbow K.J. 2008. Rab7 regulates maturation of melanosomal matrix protein gp100/Pmel17/Silv. J. Invest. Dermatol. 128, 43–50.

    Google Scholar 

  19. Jimbow K., Park J.S., Kato F., Hirosaki K., Toyofuku K., Hua C. 2000. Assembly, target-signaling and intra-cellular transport of tyrosinase gene family proteins in the initial stage of melanosome biogenesis. Pigment Cell Res. 13, 222–229.

    Article  CAS  PubMed  Google Scholar 

  20. Deng W.D., Yang S.L., Huo Y.Q., Gou X., Shi X.W., Mao H.M. 2006. Physiological and genetic characteristics of Black-boned sheep (Ovis aries). Anim. Genet. 37, 586–588.

    Article  CAS  PubMed  Google Scholar 

  21. Deng W.D., Xi D.M., Gou X., Yang S.L., Mao H.M. 2008. Physiological, biochemical and genetic profiles of the Black-boned sheep (Ovis aries). Pigment Cell Melanoma Res. 21, 266–266.

    Google Scholar 

  22. Deng W.D., Xi D.M, Gou X., Yang S.L., Shi X.W., Mao H.M. 2009. Pigmentation in Black-boned sheep (Ovis aries): Association with polymorphism of the MC1R gene. Mol. Biol. Rep. 36, 431–436.

    Article  CAS  PubMed  Google Scholar 

  23. Li W., Chen Zh., Yang L., Tan Y., He Y., Liu Q., Wu G., Peng B., Mao H., Deng W. 2009. Molecular cloning, sequence characteristics analysis and tissue expression profiles of three novel genes RhoB, RhoF, and RhoH from the black-boned sheep (Ovis aries). J. Anim. Feed Sci. 18, 271–282.

    CAS  Google Scholar 

  24. Mao H.M., Deng W.D., Sun S.R., Shu W., Yang S.L. 2005. Studies on the specific characteristics of Yunnan black-bone sheep. J. Yunnan Agric. Univ. 20, 89–93, F1.

    CAS  Google Scholar 

  25. Liu Y.G., Xiong Y.Z., Deng C.Y., Zuo B., Zhang J.H. 2004. Comparison of gene expression patterns in Long-issimus dorsi of pigs between the high-parent heterosis cross combination Landrace × Large White and the mid-parent heterosis cross combination Large White × Meishan. Asian-Aust. J. Anim. Sci. 17, 1192–1196

    CAS  Google Scholar 

  26. Liu G.Y, Gao S.Z., Ge C.R., Zhang X. 2008a. Cloning, nucleotide sequence and tissue expression profile of three novel porcine genes: RHOB, RHOG, and PRAF1. Mol. Biol. 42, 59–62.

    CAS  Google Scholar 

  27. Liu G.Y., Gao S.Z., Ge C.R., Zhang X. 2008b. Molecular characterization of the encoding regions and tissue expression analyses for three novel porcine genes: HNRPA1, YIPF5, and UB2D2. Mol. Biol. Rep. 35, 519–526.

    Article  CAS  PubMed  Google Scholar 

  28. Fehr J.E., Trotter G.W., Oxford J.T., Hart D.A. 2000. Comparison of Northern blot hybridization and reverse transcriptase-polymerase chain reaction technique for measurement of mRNA expression of metal loproteinases and matrix components in articular carti lage and synovial membrane from horses with osteoar thritis. Am. J. Vet. Res. 61, 900–905.

    Article  CAS  PubMed  Google Scholar 

  29. Daigo Y., Takayama I., Ponder B.A., Caldas C., Ward S.M., Sanders K.M., Fujino M.A. 2003. Differential gene expression in the murine gastric fundus lacking interstitial cells of Cajal. BMC Gastroenterol. 3, 14.

    Article  PubMed  Google Scholar 

  30. Liu Y.G., Xiong Y.Z., Deng C.Y. 2005. Isolation, sequence analysis and expression profile of a novel swine gene differentially expressed in the Longissimus dorsi muscle tissues from Landrace × Large White cross-combination. Acta Biochim. Biophys. Sinica. 37, 186–191.

    CAS  Google Scholar 

  31. Combet C., Blanchet C., Geourjon C., Deléage G. 2000. NPS: Network protein sequence analysis. Trends Biochem. Sci. 25, 147–150.

    Article  CAS  PubMed  Google Scholar 

  32. Hardison R.C. 2003. Comparative genomics. PLoS Biol. 1, E58.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. D. He.

Additional information

The article is published in the original

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y.D., Liu, D.D., Xi, D.M. et al. Isolation, sequence identification and expression profile of three novel genes Rab2A, Rab3A and Rab7A from black-boned sheep (Ovis aries). Mol Biol 44, 14–22 (2010). https://doi.org/10.1134/S0026893310010036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893310010036

Key words

Navigation