Advertisement

Molecular Biology

, 43:917 | Cite as

Prospects of antisense therapy technologies

Reviews

Abstract

Three variants of antisense technologies are presently known: antisense oligonucleotides, RNA interference, and ribozymes. In spite of the difference in the mechanisms of action, all of them are based on a common principle: an antisense preparation works after binding with an RNA target to form a duplex. All of the three variants are intensely used in experiments in vivo. The review considers the current situation in the field of using antisense technologies to treat various diseases. Key words: antisense therapy, antisense oligonucleotides, RNA interference, ribozymes

Keywords

Vascular Endothelial Growth Factor Respiratory Syncytial Virus Antisense Oligonucleotide Transcriptional Gene Silence Antisense Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Miyagishi M., Hayashi M., Taira K. 2003. Comparison of the suppressive effects of antisense oligonucleotides and siRNAs directed against the same targets in mammalian cells. Antisense Nucleic Acid Drug Dev. 13, 1–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Paterson B.M., Roberts B.E., Kuff E.L. 1977. Structural gene identification and mapping by DNA-mRNA hybrid-arrested cell-free translation. Proc. Natl. Acad. Sci. USA. 74, 4370–4374.CrossRefPubMedGoogle Scholar
  3. 3.
    Zamecnik P.C., Stephenson M.L. 1978. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl. Acad. Sci. USA. 75, 280–284.CrossRefPubMedGoogle Scholar
  4. 4.
    Izant J.G., Weintraub H. 1984. Inhibition of thymidine kinase gene expression by anti-sense RNA: A molecular approach to genetic analysis. Cell. 36, 1007–1015.CrossRefPubMedGoogle Scholar
  5. 5.
    Mizuno T., Chou M.Y., Inouye M. 1984. A unique mechanism regulating gene expression: Translational inhibition by a complementary RNA transcript (micRNA). Proc. Natl. Acad. Sci. USA. 81, 1966–1970.CrossRefPubMedGoogle Scholar
  6. 6.
    Simons R.W., Kleckner N. 1983. Translational control of IS10 transposition. Cell. 34, 683–691.CrossRefPubMedGoogle Scholar
  7. 7.
    Crooke R.M., Graham M.J., Martin M.J., Lemonidis K.M., Wyrzykiewiecz T., Cummins LL. 2000. Metabolism of antisense oligonucleotides in rat liver homogenates. J. Pharmacol. Exp. Ther. 292, 140–149.PubMedGoogle Scholar
  8. 8.
    Eder P.S., DeVine R.J., Dagle I.M., Walder J.A. 1991. Substrate specificity and kinetics of degradation of antisense oligonucleotides by a 3′ exonuclease in plasma. Antisense Res. Dev. 1, 141–151.PubMedGoogle Scholar
  9. 9.
    Manoharan M. 1999. 2′-Carbohydrate modifications in antisense oligonucleotide therapy: Importance of conformation, configuration and conjugation. Biochim. Biophys. Acta. 1489, 117–130.PubMedGoogle Scholar
  10. 10.
    Crooke S.T. 2000. Progress in antisense technology: The end of the beginning. Methods Enzymol. 313, 3–45.CrossRefPubMedGoogle Scholar
  11. 11.
    Inoue H., Hayase Y., Imura A., Iwau S., Miura K., Ohtsuka E. 1987. Synthesis and hybridization studies on two complementary nona(2′-O-methyl)ribonucleotides. Nucleic Acids Res. 15, 6131–6148.CrossRefPubMedGoogle Scholar
  12. 12.
    Agrawal S., Zhao Q. 1998. Mixed backbone oligonucleotides: improvement in oligonucleotide-induced toxicity in vivo. Antisense Nucleic Acid Drug Dev. 8, 135–139.PubMedGoogle Scholar
  13. 13.
    Shen L.X., Kandimalla E.R., Agrawal S. 1998. Impact of mixedbackbone oligonucleotides on target binding affinity and target cleaving specificity and selectivity by Escherichia coli RNase H. Bioorg. Med. Chem. 6, 1695–1705.CrossRefPubMedGoogle Scholar
  14. 14.
    Goel S., Desai K., Bulgaru A., et al. 2003. A safety study of a mixed-backbone oligonucleotide (GEM231) targeting the type I regulatory subunit alpha of protein kinase A using a continuous infusion schedule in patients with refractory solid tumors. Clin. Cancer Res. 9, 4069–4076.PubMedGoogle Scholar
  15. 15.
    Kurreck J. 2003. Antisense technologies. Improvement through novel chemical modifications. Eur. J. Biochem. 270, 1628–1644.CrossRefPubMedGoogle Scholar
  16. 16.
    Casey B.P., Glazer P.M. 2001. Gene targeting via triplehelix formation. Prog. Nucleic Acid Res. Mol. Biol. 67, 163–192.CrossRefPubMedGoogle Scholar
  17. 17.
    Pestka S., Daugherty B.L., Jung V., Hotta K., Pestka R.K. 1984. AntimRNA: Specific inhibition of translation of single mRNA molecules. Proc. Natl. Acad. Sci. USA. 81, 7525–7528.CrossRefPubMedGoogle Scholar
  18. 18.
    Mercatante D.R., Kole R. 2002. Control of alternative splicing by antisense oligonucleotides as a potential chemotherapy: Effects on gene expression. Biochim. Biophys. Acta. 1587, 126–132.PubMedGoogle Scholar
  19. 19.
    Abe T., Suzuki S., Hatta T., Takai K., Yokota T., Takaku H. 1998. Specific inhibition of influenza virus RNA polymerase and nucleoprotein gene expression by liposomally encapsulated antisense phosphorothioate oligonucleotides in MDCK cells. Antiviral Chem. Chemother. 9, 253–262.Google Scholar
  20. 20.
    Roh H., Pippin J., Drebin J.A. 2000. Down-regulation of HER2/neu expression induces apoptosis in human cancer cells that overexpress HER2/neu. Cancer Res. 60, 560–565.PubMedGoogle Scholar
  21. 21.
    Bielinska A., Kukowska Latallo J.F., Johnson J., Tomalia D.A., Baker J.R. 1996. Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers. Nucleic Acids Res. 24, 2176–2182.CrossRefPubMedGoogle Scholar
  22. 22.
    Haensler J., Szoka F.C. 1993. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconj. Chem. 4, 372–379.CrossRefGoogle Scholar
  23. 23.
    Akhtar S., Hughes M.D., Khan A., Bibby M., Hussain M., Nawaz Q., Double J., Sayyed P. 2000. The delivery of antisense therapeutics. Adv. Drug Deliv. Rev. 44, 3–21.CrossRefPubMedGoogle Scholar
  24. 24.
    Brigger I., Dubernet C., Couvreur P. 2002. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 54, 631–651.CrossRefPubMedGoogle Scholar
  25. 25.
    Manoharan M. 2002. Oligonucleotide conjugates as potential antisense drugs with improved uptake, biodistribution, targeted delivery, and mechanism of action. Antisense Nucleic Acid Drug Dev. 2, 103–128.CrossRefGoogle Scholar
  26. 26.
    Sandrasagra A., Leonard S.A., Tang L., et al. 2002. Discovery and development of respirable antisense therapeutics for asthma. Antisense Nucleic Acid Drug Dev. 12, 177–181.CrossRefPubMedGoogle Scholar
  27. 27.
    Brand R.M. 2001. Topical and transdermal delivery of antisense oligonucleotides. Curr. Opin. Mol. Ther. 3, 244–248.PubMedGoogle Scholar
  28. 28.
    Klibanov A.L., Maruyama K., Torchilin V.P., Huang L. 1990. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268, 235–237.CrossRefPubMedGoogle Scholar
  29. 29.
    Zinker B.A., Rondinone C.M., Trevillyan J.M., Gum R.J., Clampit J.E., Waring J.F., et al. 2002. PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice. Proc. Natl. Acad. Sci. USA. 99, 11357–11362.CrossRefPubMedGoogle Scholar
  30. 30.
    Field A.K. 1999. Oligonucleotides as inhibitors of human immunodeficiency virus. Curr. Opin. Mol. Ther. 1, 323–331.PubMedGoogle Scholar
  31. 31.
    Tsuboi R., Ueki R., Ogawa H. 2001. Third Intercontinental Meeting of Hair Research Societies, Tokyo, Japan. Abstract 075.Google Scholar
  32. 32.
  33. 33.
    Whitesell L., Rosolen A., Neckers L.M. 1991. In vivo modulation of N-myc expression by continous perfusion with an antisense oligonucleotide. Antisense Res. Dev. 1, 343–350.PubMedGoogle Scholar
  34. 34.
    Anfossi G., Gewirtz A.M., Calabretta B. 1989. An oligomer complementary to c-myb-encoded mRNA inhibits proliferation of human myeloid leukemia cell lines. Proc. Natl. Acad. Sci. USA. 86, 3379–3383.CrossRefPubMedGoogle Scholar
  35. 35.
    Chen G., Oh S., Monia B.P., Stacey D.W. 1996. Antisense oligonucleotides demonstrate a dominant role of c-Ki-RAS proteins in regulating the proliferation of diploid human fibroblasts. J. Biol. Chem. 271, 28259–28265.CrossRefPubMedGoogle Scholar
  36. 36.
    Cioffi C.L., Garay M., Johnston J.F., et al. 1997. Selective inhibition of A-Raf and C-Raf mRNA expression by antisense oligodeoxynucleotides in rat vascular smooth muscle cells: Role of A-Raf and C-Raf in seruminduced proliferation. Mol. Pharmacol. 51, 383–389.PubMedGoogle Scholar
  37. 37.
    Cioffi C.L., Monia B.P. 2000. Evaluation of biological role of c-Jun N-terminal kinase using an antisense approach. Methods Enzymol. 314, 363–378.CrossRefPubMedGoogle Scholar
  38. 38.
    Holt J.T., Redner R.L., Nienhuis A.W. 1988. An oligomer complementary to c-MYC mRNa inhibits proliferation of HL60 promyelocytic cells and induces differentiation. Mol. Cell Biol. 8, 963–973.PubMedGoogle Scholar
  39. 39.
    Jansen B., Schlagbauer-Wadl H., Brown B.D., et al. 1998. Bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nature Med. 4, 232–234.CrossRefPubMedGoogle Scholar
  40. 40.
    Kondo Y., Koga S., Komata T., Kondo S. 2000. Treatment of prostate cancer in vitro and in vivo with 2-5A-anti-telomerase RNA component. Oncogene. 19, 2205–2211.CrossRefPubMedGoogle Scholar
  41. 41.
    Leech S.H., Olie R.A., Simoes-Wust A.P., et al. 2000. Induction of apoptosis in lung cancer cells following bcl-xL antisense treatment. Int. J. Cancer. 87, 582–590.CrossRefPubMedGoogle Scholar
  42. 42.
    Li F., Ackermann E.J., Bennett C.F., et al. 1999. Pleiotropic cell division defects and apoptosis induced by interference with survivin function. Nature Cell Biol. 1, 461–466.CrossRefPubMedGoogle Scholar
  43. 43.
    Mahon F.X., Ripoche J., Pigeonnier V., et al. 1995. Inhibition of chronic myelogenous leukaemia cells harboring a BCR-ABL B3A2 junction by antisense oligonucleotides targeted at the B2A2 junction. Exp. Hematol. 23, 1606–1611.PubMedGoogle Scholar
  44. 44.
    Tamm I., Wagner M. 2006. Antisense therapy in clinical oncology. Mol. Biotechnol. 33, 221–238.CrossRefPubMedGoogle Scholar
  45. 45.
    Guo S., Kemphues K.J. 1995. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell. 81, 611–620.CrossRefPubMedGoogle Scholar
  46. 46.
    Napoli C., Lemieux C., Jorgensen R. 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell. 2, 279–289.CrossRefPubMedGoogle Scholar
  47. 47.
    Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391, 806–811.CrossRefPubMedGoogle Scholar
  48. 48.
    Tuschl T., Zamore P.D., Lehmann R., et al. 1999. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Devel. 24, 3191–3197.CrossRefGoogle Scholar
  49. 49.
    Lee Y., Hur I., Park S.Y., Kim Y.K., Suh M.R., Kim V.N. 2006. The role of PACT in the RNA silencing pathway. EMBO J. 25, 522–532.CrossRefPubMedGoogle Scholar
  50. 50.
    Tang G. 2005. siRNA and miRNA: An insight into RISCs. Trends Biochem Sci. 30, 106–114.CrossRefPubMedGoogle Scholar
  51. 51.
    Bartel D.P. 2004. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116, 281–297.CrossRefPubMedGoogle Scholar
  52. 52.
    Lee Y., Ahn C., Han J., Choi H., Kim J., Yim J., Lee J., Provost P., Radmark O., Kim S., Kim V.N. 2003. The nuclear RNase III Drosha initiates microRNA processing. Nature. 425, 415–419.CrossRefPubMedGoogle Scholar
  53. 53.
    Yi R., Qin Y., Macara I.G., Cullen B.R. 2003. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016.CrossRefPubMedGoogle Scholar
  54. 54.
    Chendrimada T.P., Gregory R.I., Kumaraswamy E., Norman J., Cooch N., Nishikura K., Shiekhattar R. 2005. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 436, 740–744.CrossRefPubMedGoogle Scholar
  55. 55.
    Kiriakidou M., Nelson P.T., Kouranov A., Fitziev P., Bouyioukos C., Mourelatos Z., Hatzigeorgiou A. 2004. A combined computational-experimental approach predicts human microRNA targets. Genes Dev. 18, 1165–1178.CrossRefPubMedGoogle Scholar
  56. 56.
    Lewis B.P., Burge C.B., Bartel D.P. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 120, 15–20.CrossRefPubMedGoogle Scholar
  57. 57.
    Ryazansky S.S., Gvozdev V.A. 2008. Small RNAs and carcinogenesis. Biokhimiya. 73, 640–655.Google Scholar
  58. 58.
  59. 59.
  60. 60.
    Meister G., Landthaler M., Patkaniowska A., Dorsett Y., Teng G., Tuschl T. 2004. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell. 15, 185–197.CrossRefPubMedGoogle Scholar
  61. 61.
    Pillai R.S., Bhattacharyya S.N., Artus C.G., Zoller T., Cougot N., Basyuk E., Bertrand E., Filipowicz W. 2005. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science. 309, 1573–1576.CrossRefPubMedGoogle Scholar
  62. 62.
    Kiriakidou M., Tan G.S., Lamprinaki S., de Planell-Saguer M., Nelson P.T., Mourelatos Z. 2007. An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell. 129, 1141–1151.CrossRefPubMedGoogle Scholar
  63. 63.
    Wassenegger M. 2005. The role of the RNAi machinery in heterochromatin formation. Cell. 122, 13–16.CrossRefPubMedGoogle Scholar
  64. 64.
    Weinberg M.S., Villeneuve L.M., Ehsani A., Amarzguioui M., Aagaard L., Chen Z.X., Riggs A.D., Rossi J.J., Morris K.V. 2006. The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells. RNA. 12, 256–262.CrossRefPubMedGoogle Scholar
  65. 65.
    Ting A.H., Schuebel K.E., Herman J.G., Baylin S.B. 2005. Short double-stranded RNA induces transcriptional gene silencing in human cancer cells in the absence of DNA methylation. Nature Genet. 37, 906–910.CrossRefPubMedGoogle Scholar
  66. 66.
    Galvani A., Sperling L. 2002. RNA interference by feeding in Paramecium. Trends Genet. 18, 11–12.CrossRefPubMedGoogle Scholar
  67. 67.
    Shuey D.J., McCallus D.E., Giordano T. 2002. RNAi: Gene silencing in therapeutic intervention. Drug Discov. Today. 7, 1040–1046.CrossRefPubMedGoogle Scholar
  68. 68.
    Caplen N.J., Fleenor J., Fire A., Morgan R.A. 2000. dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene. 252, 95–105.CrossRefPubMedGoogle Scholar
  69. 69.
    Brummelkamp T.R., Bernards R., Agami R. 2002. A system for stable expression of short interfering RNAs in mammalian cells. Science. 296, 550–553.CrossRefPubMedGoogle Scholar
  70. 70.
    Zeng Y., Wagner E.J., Cullen B.R. 2002. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell. 9, 1327–1333.CrossRefPubMedGoogle Scholar
  71. 71.
  72. 72.
  73. 73.
  74. 74.
  75. 75.
  76. 76.
  77. 77.
  78. 78.
  79. 79.
  80. 80.
  81. 81.
  82. 82.
    Cech T.R. 1987. The chemistry of self-splicing RNA and RNA enzymes. Science. 236, 1532–1539.CrossRefPubMedGoogle Scholar
  83. 83.
  84. 84.
    Symons R.H. 1992. Small catalytic RNAs. Annu. Rev. Biochem. 61, 641–671.CrossRefPubMedGoogle Scholar
  85. 85.
    Fedor M.J. 2000. Structure and function of the hairpin ribozyme. J. Mol. Biol. 297, 269–291.CrossRefPubMedGoogle Scholar
  86. 86.
    Dahm S.C., Uhlenbeck O.C. 1991. Role of divalent metal ions in the hammerhead RNA cleavage reaction. Biochemistry. 30, 9464–9469.CrossRefPubMedGoogle Scholar
  87. 87.
    Breaker R.R., Joyce G.F. 1994. A DNA enzyme that cleaves RNA. Chem. Biol. 1, 223–229.CrossRefPubMedGoogle Scholar
  88. 88.
    Baum D.A., Silverman S.K. 2008. Deoxyribozymes: Useful DNA catalysts in vitro and in vivo. Cell. Mol. Life Sci. 65, 2156–2174.CrossRefPubMedGoogle Scholar
  89. 89.
    Vorobieva M.A., Kovalev N.A., Zenkova M.A., Veniaminova A.G., Vlasov V.V. 2006. Hammerhead binary ribozymes. Vestn. VOGiS. 10, 321–330.Google Scholar
  90. 90.
    Macejak D.G., Jensen K.L., Jamison S.F., Domenico K., Roberts E.C., Chaudhary N., von Carlowitz I., Bellon L., Tong M.J., Conrad A., Pavco P.A., Blatt L.M. 2000. Inhibition of hepatitis C virus (HCV) RNA-dependent translation and replication of a chimeric HCV poliovirus using synthetic stabilized ribozymes. Hepatology. 31, 769–776.CrossRefPubMedGoogle Scholar
  91. 91.
    Sandberg J.A., Parker V.P., Blanchard K.S., Sweedler D., Powell J.A., Kachensky A., Bellon L., Usman N., Rossing T., Borden E., Blatt L.M. 2000. Pharmacokinetics and tolerability of an antiangiogenic ribozyme (ANGIOZYME) in healthy volunteers. J. Clin. Pharmacol. 40, 1462–1469.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Medical Genetic Research CenterRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations