Skip to main content
Log in

Analogy-based protein structure prediction: II. Testing of substitution matrices and pseudopotentials used to align protein sequences with spatial structures

  • Mathematical and Systemic Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The results of testing the recognition ability of various amino acid substitution matrices and manifold (both extracted from the literature and of our own design) pseudopotentials intended for the recognition of protein structures and sequence-to-structure alignments are described. The numerical estimates of the recognition ability of various substitution matrices and pseudopotentials were obtained for different levels of protein structure similarity. It is demonstrated that substitution matrices work much better than pseudopotentials at a high degree of sequence similarity of spatially similar proteins; however, some pseudopotentials outdo substitution matrices at a low level of sequence similarity between analogous proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

amino acid and 3D is three-dimensional

References

  1. Kopp J., Bordoli L., Battey J.N.D., Kiefer F., Schwede T. 2007. Assesment of CASP7 predictions for templatebased modeling targets. Proteins. 69, S8, 38–56.

    Article  Google Scholar 

  2. Dayhoff M.O., Schwartz R.M., Orcutt B.C. 1978. A model of evolutionary change in proteins. In: Atlas of Protein Sequence and Structure, vol. 5,suppl. 3. Ed. Dayhoff M.O. Washington, DC: Natl. Biomed. Res. Found., pp. 345–352.

    Google Scholar 

  3. Schwartz R.M., Dayhoff M.O. 1978. Matrices for detecting distant relationships. In: Atlas of Protein Sequence and Structure, vol. 5,suppl. 3. Ed. Dayhoff M.O. Washington, DC: Natl. Biomed. Res. Found., pp. 353–358.

    Google Scholar 

  4. Smith T.F., Waterman M.S. 1981. Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197.

    Article  PubMed  CAS  Google Scholar 

  5. Altschul S.F., Gish W., Miller W., Myers E., Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410; http://www.ebi.ac.uk/blast.

    PubMed  CAS  Google Scholar 

  6. Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402; http://www.ebi.ac.uk/psiblast.

    Article  PubMed  CAS  Google Scholar 

  7. Russell R.B., Copley R.R., Barton G.J. 1996. Protein fold recognition by mapping predicted secondary structures. J. Mol. Biol. 259, 349–365.

    Article  PubMed  CAS  Google Scholar 

  8. Wallqvist A., Fukunishi Y., Murphy L.R., Fadel A., Levy R.M. 2000. Iterative sequence/secondary structure search for protein homologs: Comparison with amino acid sequence alignments and application to fold recognition in genome databases. Bioinformatics. 16, 988–1002.

    Article  PubMed  CAS  Google Scholar 

  9. Litvinov I.I., Lobanov M.Yu., Mironov A.A., Finkelstein A.V., Roytberg M.A. 2006. Information on the secondary structure improves the quality of protein sequence alignment. Mol. Biol. 40, 533–540.

    Article  CAS  Google Scholar 

  10. Finkelstein A.V., Reva B.A. 1991. Search for the most stable folds of protein chains. Nature. 351, 497–499.

    Article  PubMed  CAS  Google Scholar 

  11. Bowie J.U., Luthy R., Eisenberg D. 1991. A method to identify protein sequences that fold into a known threedimensional structure. Science. 253, 164–170.

    Article  PubMed  CAS  Google Scholar 

  12. Finkelstein A.V., Reva B.A. 1990. Globular protein threading by a self-consisted field method. 35, 402–406.

    Google Scholar 

  13. Miyazawa S., Jernigan R.L. 1985. Estimation of effective interresidue contact energies from protein crystal structures: Quasi-chemical approximation. Macromolecules. 18, 534–552.

    Article  CAS  Google Scholar 

  14. Blundell T.L., Sibanda B.L., Sternberg M.J., Thornton J.M. 1987. Knowledge-based prediction of protein structures and the design of novel molecules. Nature. 326, 347–352.

    Article  PubMed  CAS  Google Scholar 

  15. Sippl M.J. 1990. Calculation of conformational ensembles from potentials of mean force: An approach to the knowledge-based prediction of local structures in globular proteins. J. Mol. Biol. 213, 859–883.

    Article  PubMed  CAS  Google Scholar 

  16. Hendlich M., Lackner P., Weitckus S., Floeckner H., Froschauer R., Gottsbacher K., Casari G., Sippl M.J. 1990. Identification of native protein folds amongst a large number of incorrect models: The calculation of low energy conformations from potentials of mean force. J. Mol. Biol. 216, 167–180.

    Article  PubMed  CAS  Google Scholar 

  17. Godzik A., Kolinski A., Skolnik J. 1992. Topology fingerprint approach to the inverse protein folding problem. J. Mol. Biol. 227, 227–238.

    Article  PubMed  CAS  Google Scholar 

  18. Jones D.T., Thornton J.M. 1996. Potential energy functions for threading. Curr. Opin. Struct. Biol. 6, 210–216.

    Article  PubMed  CAS  Google Scholar 

  19. Lobanov M.Yu., Bogatyreva N.S., Ivankov D.N., Finkelstein A.V. 2009. Prediction of protein structure by analogy: 1. Now database of spatially similar and dissimilar protein domain structures for testing and optimizing prodiction methods. Mol. Biol. 43, 665–676.

    Article  Google Scholar 

  20. Gonnet G.H., Cohen M.A., Benner S.A. 1992. Exhaustive matching of the entire protein sequence database. Science. 256, 1443–1445.

    Article  PubMed  CAS  Google Scholar 

  21. Henikoff S., Henikoff J.G. 1992. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA. 89, 10915–10919.

    Article  PubMed  CAS  Google Scholar 

  22. Miyazawa S., Jernigan R.L. 1993. A new substitution matrix for protein sequence searches based on contact frequencies in protein structures. Protein Eng. 6, 267–278.

    Article  PubMed  CAS  Google Scholar 

  23. Miyazawa S., Jernigan R.L. 1996. Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J. Mol. Biol. 256, 623–644.

    Article  PubMed  CAS  Google Scholar 

  24. Miyazawa S., Jernigan R.L. 1999. Self-consistent estimation of inter-residue protein contact energies based on an equilibrium mixture approximation of residues. Proteins. 34, 49–68.

    Article  PubMed  CAS  Google Scholar 

  25. Berman H., Henrick K., Nakamura H., Markley J.L. 2007. The worldwide Protein Data Bank (wwPDB): Ensuring a single, uniform archive of PDB data. Nucleic Acid Res. 35, D301–D303; http://www.wwpdb.org.

    Article  PubMed  CAS  Google Scholar 

  26. Kabsch W., Sander C. 1983. Dictionary of protein secondary structure: Pattern recognition of hydrogenbonded and geometrical features. Biopolymers. 22, 2577–2637; http://mobyle.pasteur.fr/cgi-bin/Mobyle-Portal/portal.py?form = dssp.

    Article  PubMed  CAS  Google Scholar 

  27. Jones D. 1999. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol Biol. 292, 195–202; http://bioinf.cs.ucl.ac.uk/psipred.

    Article  PubMed  CAS  Google Scholar 

  28. Finkelstein A.V., Badretdinov A.Ya., Gutin A.M. 1995. Why do protein architectures have a Boltzmann-like statistics? Proteins. 23, 142–150.

    Article  PubMed  CAS  Google Scholar 

  29. Murzin A.G., Brenner S.E., Hubbard T., Chothia C. 1995. SCOP: A structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540; http://scop.mrclmb.cam.ac.uk/scop/parse/index.html.

    PubMed  CAS  Google Scholar 

  30. Siew N., Elofsson A., Rychlewski L., Fischer D. 2000. MaxSub: An automated measure for the assessment of protein structure prediction quality. Bioinformatics. 16, 776–785.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Finkel’shtein.

Additional information

Original Russian Text © M.Yu. Lobanov, A.V. Finkel’shtein, 2009, published in Molekulyarnaya Biologiya, 2009, Vol. 43, No. 4, pp. 733–740.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lobanov, M.Y., Finkel’shtein, A.V. Analogy-based protein structure prediction: II. Testing of substitution matrices and pseudopotentials used to align protein sequences with spatial structures. Mol Biol 43, 677–684 (2009). https://doi.org/10.1134/S0026893309040207

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893309040207

Key words

Navigation