Skip to main content
Log in

X-ray interferometry of the axial movement of myosin heads during muscle force generation initiated by T-Jump

  • Structural-Functional Analysis of Biopolymers and Their Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The interference fine structure of the M3 reflection in the low-angle X-ray diffraction patterns of muscle fibers is used for the measurements of axial movements of myosin heads with a precision of 0.1–0.2 nm. We have measured changes in the M3 interference profile during tension rise induced by a 5°C to 30°C temperature jump in thin bundles of contracting fibers from rabbit skeletal muscle. Interpreting the data with a point diffractor model gives an estimate for the axial movement of the myosin heads during force rise of less than 0.6 nm. Modifications of the point diffractor model are discussed. We show that our experimental data can be explained by a model where myosin heads bind actin in a number of structurally different states either stereoor non-stereo-specifically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huxley H.E., Simmons R.M., Faruqi A.R., Kress M., Bordas J., Koch M.H. 1983. Changes in the X-ray reflections from contracting muscle during rapid mechanical transients and their structural implications. J. Mol. Biol. 169, 469–506.

    Article  PubMed  CAS  Google Scholar 

  2. Irving M., Piazzesi G., Lucii L., Sun Y.B., Harford J.J., Dobbie I.M., Ferenczi M.A., Reconditi M., Lombardi V. 2000. Conformation of the myosin motor during force generation in skeletal muscle. Nature Struct. Biol. 6, 482–485.

    Article  Google Scholar 

  3. Huxley H.E., Brown W. 1967. The low-angle X-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J. Mol. Biol. 30, 383–384.

    PubMed  CAS  Google Scholar 

  4. Rome E. 1972. Relaxation of glycerinated muscle: Lowangle x-ray diffraction studies. J. Mol. Biol. 65, 331–345.

    Article  PubMed  CAS  Google Scholar 

  5. Haselgrove J.C. 1975. X-ray evidence for conformational changes in the myosin filaments of vertebrate striated muscle. J. Mol. Biol. 92, 113–143.

    Article  PubMed  CAS  Google Scholar 

  6. Malinchik S.B., Lednev V.V. 1992. Interpretation of the X-ray diffraction pattern from relaxed skeletal muscle and modelling of the thick filament structure. J. Muscle Res. Cell Motil. 13, 406–419.

    Article  PubMed  CAS  Google Scholar 

  7. Linari M., Piazzesi G., Dobbie I., Koubassova N., Reconditi M., Narayanan T., Diat O., Irving M., Lombardi V. 2000. Interference fine structure and sarcomere length dependence of the axial X-ray pattern from active single muscle fibers. Proc. Natl. Acad. Sci. USA. 97, 7226–7231.

    Article  PubMed  CAS  Google Scholar 

  8. Piazzesi G., Reconditi M., Linari M., Lucii L., Sun Y.B., Narayanan T., Boesecke P., Lombardi V., Irving M. 2002. Mechanism of force generation by myosin heads in skeletal muscle. Nature. 415, 659–662.

    Article  PubMed  CAS  Google Scholar 

  9. Reconditi M., Koubassova N., Linari M., Dobbie I., Narayanan T., Diat O., Piazzesi G., Lombardi V., Irving M. 2003. The conformation of myosin head domains in rigor muscle determined by X-ray interference. Biophys. J. 85, 1098–1110.

    Article  PubMed  CAS  Google Scholar 

  10. Reconditi M., Linari M., Lucii L., Stewart A., Sun Y.B., Boesecke P., Narayanan T., Fischetti R.F., Irving T., Piazzesi G., Irving M., Lombardi V. 2004. The myosin motor in muscle generates a smaller and slower working stroke at higher load. Nature. 428, 578–581.

    Article  PubMed  CAS  Google Scholar 

  11. Huxley H., Reconditi M., Stewart A., Irving T. 2006. Xray interference studies of crossbridge action in muscle contraction: evidence from quick releases. J. Mol. Biol. 363, 743–761.

    Article  PubMed  CAS  Google Scholar 

  12. Huxley H., Reconditi M., Stewart A., Irving T. 2006. Xray interference studies of crossbridge action in muscle contraction: Evidence from muscles during steady shortening. J. Mol. Biol. 363, 762–772.

    Article  PubMed  CAS  Google Scholar 

  13. Bershitsky S.Y., Tsaturyan A.K. 1992. Tension responses to joule temperature jump in skinned rabbit muscle fibres. J. Physiol. 447, 425–448.

    PubMed  CAS  Google Scholar 

  14. Bershitsky S.Y., Tsaturyan A.K., Bershitskaya O.N., Mashanov G.I., Brown P., Burns R., Ferenczi M.A. 1997. Muscle force is generated by myosin heads stereospecifically attached to actin. Nature. 388, 186–190.

    Article  PubMed  CAS  Google Scholar 

  15. Bershitsky S.Y., Tsaturyan A.K. 2002. The elementary force generation process probed by temperature and length perturbations in muscle fibres from the rabbit. J. Physiol. 540, 971–988.

    Article  PubMed  CAS  Google Scholar 

  16. Ferenczi M.A., Bershitsky S.Y., Koubassova N., Siththanandan V., Helsby W.I., Panine P., Roessle M., Narayanan T., Tsaturyan A.K. 2005. The “roll and lock” mechanism of force generation in muscle. Structure. 13, 131–141.

    Article  PubMed  CAS  Google Scholar 

  17. Bershitsky S.Y., Tsaturyan A.K., Bershitskaya O.N., Mashanov G.I., Brown P., Webb M., Ferenczi M.A. 1996. Mechanical and structural properties underlying contraction of skeletal muscle fibers after partial 1-ethyl-3-[(3-dimethylamino)propyl]carbodiimide cross-linking. Biophys. J. 71, 1462–1474.

    Article  PubMed  CAS  Google Scholar 

  18. Craig R. 1977. Structure of A-segments from frog and rabbit skeletal muscle. J. Mol. Biol. 109, 69–81.

    Article  PubMed  CAS  Google Scholar 

  19. Juanhuix J., Bordas J., Campmany J., Svensson A., Bassford M.L., Narayanan T. 2001. Axial disposition of myosin heads in isometrically contracting muscles. Biophys J. 80, 1429–1441.

    Article  PubMed  CAS  Google Scholar 

  20. Vainshtein B.K. 1963. Difraktsiya rentgenovskikh lushei na tsepnykh molekilakh (X-Ray Diffraction on Chain Molecules). Moscow: Akad. Nauk SSSR.

    Google Scholar 

  21. Holmes K.C., Angert I., Kull F.J., Jahn W., Schröder R.R. 2003. Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide. Nature. 425, 423–427.

    Article  PubMed  CAS  Google Scholar 

  22. Ford L.E., Huxley A.F., Simmons R.M. 1981. The relation between stiffness and filament overlap in stimulated frog muscle fibres. J. Physiol. 311, 219–249.

    PubMed  CAS  Google Scholar 

  23. Horowits R., Podolsky R.J. 1987. The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: Evidence for the role of titin filaments. J. Cell Biol. 105, 2217–2223.

    Article  PubMed  CAS  Google Scholar 

  24. Koubassova N.A., Tsaturyan A.K. 2002. Direct modeling of x-ray diffraction pattern from skeletal muscle in rigor. Biophys. J. 83, 1082–1097.

    Article  PubMed  CAS  Google Scholar 

  25. Linari M., Brunello E., Reconditi M., Sun Y.B., Panine P., Narayanan T., Piazzesi G., Lombardi V., Irving M. 2005. The structural basis of the increase in isometric force production with temperature in frog skeletal muscle. J. Physiol. 567, 459–469.

    Article  PubMed  CAS  Google Scholar 

  26. Tawada K, Kimura M. 1986. Stiffness of carbodiimide-crosslinked glycerinated muscle fibres in rigor and relaxing solutions at high salt concentrations. J. Muscle Res. Cell Motil. 7, 339–350.

    Article  PubMed  CAS  Google Scholar 

  27. Bershitsky S.Y., Tsaturyan A.K. 1989. Effect of joule temperature jump on tension and stiffness of skinned rabbit muscle fibers. Biophys. J. 5, 809–816.

    Article  Google Scholar 

  28. Tsaturyan A.K., Koubassova N., Ferenczi M.A., Narayanan T., Roessle M., Bershitsky S.Y. 2005. Strong binding of myosin heads stretches and twists the actin helix. Biophys. J. 88, 1902–1910.

    Article  PubMed  CAS  Google Scholar 

  29. Hirose K., Franzini-Armstrong C., Goldman Y.E., Murray J.M. 1994. Structural changes in muscle crossbridges accompanying force generation. J. Cell Biol. 127, 763–778.

    Article  PubMed  CAS  Google Scholar 

  30. Taylor K.A., Schmitz H., Reedy M.C., Goldman Y.E., Franzini-Armstrong C., Sasaki H., Tregear R.T., Poole K., Lucaveche C., Edwards R.J., Chen L.F., Winkler H., Reedy M.K. 1999. Tomographic 3D reconstruction of quick-frozen, Ca2+activated contracting insect flight muscle. Cell. 99, 421–431.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Koubassova.

Additional information

Original Russian Text © N.A. Koubassova, S.Y. Bershitsky, M.A. Ferenczi, P. Panine, T. Narayanan, A.K. Tsaturyan, 2009, published in Molekulyarnaya Biologiya, 2009, Vol. 43, No. 4, pp. 689–699.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koubassova, N.A., Bershitsky, S.Y., Ferenczi, M.A. et al. X-ray interferometry of the axial movement of myosin heads during muscle force generation initiated by T-Jump. Mol Biol 43, 632–642 (2009). https://doi.org/10.1134/S0026893309040165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893309040165

Key words

Navigation