Skip to main content
Log in

Conserved structural features of ETS domain-DNA complexes

  • Structural-Functional Analysis of Biopolymers and Their Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

ETS proteins are a family of widespread transcription factors that regulate the expression of many animal genes. Structurally, ETS proteins are characterized by a conserved DNA-binding ETS domain, which recognizes DNA sequences containing the trinucleotide GGA. The structural features of ETS domain-DNA complexes were analyzed, and conserved contacts important in terms of interaction stability and specificity were identified. The analysis revealed nine conserved hydrogen bonds with oxygens of DNA backbone phosphates, two bidentate hydrogen bonds with DNA major groove atoms, one conserved hydrophobic cluster located on the protein-DNA interface and important for binding site recognition, and 12 conserved water molecules presumably mediating the ETS domain-DNA interaction. The results are represented in specialized data bank of protein-DNA complexes (NPIDB).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Donaldson L.W., Petersen J.M., Graves B.J., McIntosh L.P. 1994. Secondary structure of the ETS domain places murine Ets-1 in the superfamily of winged helix-turn-helix DNA-binding proteins. Biochemistry. 33, 13509–13516.

    Article  PubMed  CAS  Google Scholar 

  2. Nunn M.F., Seeburg P.H., Moscovici C., Duesberg P.H. 1983. Tripartite structure of the avian erythroblastosis virus E26 transforming gene. Nature ( Lond.). 306, 391–395.

    Article  CAS  Google Scholar 

  3. Wasylyk B., Hahn S.L., Giovane A. 1993. The Ets family of transcription factors. Eur. J. Biochemistry. 211(1–2), 7–18.

    Article  CAS  Google Scholar 

  4. Oikawa T., Yamada T. 2003. Molecular biology of the Ets family of transcription factors. Gene. 303, 11–34.

    Article  PubMed  CAS  Google Scholar 

  5. Bassuk A.G., Leiden J.M. 1995. A direct physical association between ETS and AP-1 transcription factors in normal human T cells. Immunity. 3, 223–237.

    Article  PubMed  CAS  Google Scholar 

  6. Bassuk A.G., Anandappa R.T., Leiden J.M. 1997 Physical interactions between Ets and NF-kappaB/NFAT proteins play an important role in their cooperative activation of the human immunodeficiency virus enhancer in T cells. J. Virol. 71, 3563–3573.

    PubMed  CAS  Google Scholar 

  7. Li R., Pei H., Watson D.K., Papas T.S. 2000. EAP1/Daxx interacts with ETS1 and represses transcriptional activation of ETS1 target genes. Oncogene. 19, 745–753.

    Article  PubMed  CAS  Google Scholar 

  8. Pei H., Yordy J.S., Leng Q., Zhao Q., Watson D.K., Li R. 2003. EAPII interacts with ETS1 and modulates its transcriptional function. Oncogene. 22, 2699–2709.

    Article  PubMed  CAS  Google Scholar 

  9. Yordy J.S., Li R., Sementchenko V.I., Pei H., Muise-Helmericks R.C., Watson D.K. 2004. SP100 expression modulates ETS1 transcriptional activity and inhibits cell invasion. Oncogene. 23, 6654–6665.

    Article  PubMed  CAS  Google Scholar 

  10. Wasylyk B., Hagman J., Gutierrez-Hartmann A. 1998. Ets transcription factors: Nuclear effectors of the Ras-MAP kinase signaling pathway. Trends Biochem. Sci. 23, 213–216.

    Article  PubMed  CAS  Google Scholar 

  11. Spirin S., Titov M., Karyagina A., Alexeevski A. 2007. NPIDB: A database of nucleic acids-protein interactions. Bioinformatics. 23, 3247–3248.

    Article  PubMed  CAS  Google Scholar 

  12. Krissinel E., Henrick K. 2004. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Cryst. 60, 2256–2268.

    CAS  Google Scholar 

  13. Nicholas K.B., Nicholas H.B. Jr., Deerfield D.W. 1997. GeneDoc: Analysis and visualization of genetic variation. EMBNEW News. 4, 1–4.

    Google Scholar 

  14. Sayle R.A., Milner-White E.J. 1995. RASMOL: Biomolecular graphics for all. Trends Biochem. Sci. 20, 374–376.

    Article  PubMed  CAS  Google Scholar 

  15. DeLano W.L. 2003. The PyMOL Molecular Graphics System. San Carlos, CA: DeLano Scientific.

    Google Scholar 

  16. Alexeevski A., Spirin S., Alexeevski D., Klychnikov O., Ershova A., Titov M., Karyagina A. 2004. CluD, a program for the determination of hydrophobic clusters in 3D structures of protein and protein-nucleic acids complexes. Biofizika (Moscow). 48,Suppl. 1, 146–156.

    Google Scholar 

  17. Aksianov E., Zanegina O., Alexeevski A., Karyagina A., Spirin S. 2008. Conserved water molecules in X-ray structures highlight the role of water in intramolecular and intermolecular interactions. J. Bioinform. Comp. Biol. 6, 775–788.

    Article  CAS  Google Scholar 

  18. Tang Y., Nilsson L. 1998. Interaction of human SRY protein with DNA: A molecular dynamics study. Proteins. 31, 417–433.

    Article  PubMed  CAS  Google Scholar 

  19. Gorfe A.A., Jelesarov I. 2003. Energetics of sequence-specific protein-DNA association: Computational analysis of integrase Tn916 binding to its target DNA. Biochemistry. 42, 11568–11576.

    Article  PubMed  CAS  Google Scholar 

  20. Lett C.M., Berghuis A.M., Frey H.E., Lepock J.R., Guillemette J.G. 1996. The role of a conserved water molecule in the redox-dependent thermal stability of iso-1-cytochrome c. J. Biol. Chem. 271, 29088–29093.

    Article  PubMed  CAS  Google Scholar 

  21. Fauman E.B., Rutenber E.E., Maley G.F., Maley F., Stroud R.M. 1994. Water-mediated substrate/product discrimination: The product complex of thymidylate synthase at 1.83 Å. Biochemistry. 33, 1502–1511.

    Article  PubMed  CAS  Google Scholar 

  22. Likic V.A., Juranic N., Macura S., Prendergast F.G. 2000. A “structural” water molecule in the family of fatty acid binding proteins. Protein Sci. 9, 497–504.

    PubMed  CAS  Google Scholar 

  23. Mustata G., Briggs J.M. 2004. Cluster analysis of water molecules in alanine racemase and their putative structural role. Protein Eng. Des. Sel. 17, 2232–2234.

    Article  Google Scholar 

  24. Karyagina A., Ershova A., Spirin S., Alexeevski A. 2005. The role of water in homeodomain-DNA interaction. In: Bioinformatics of Genome Regulation and Structure. Eds Kolchanov N., Hofestaedt R. N.Y.: Springer Science + Business Media, Inc., pp. 247–257.

    Google Scholar 

  25. Joachimiak A., Haran T.E., Sigler P.B. 1994. Mutagenesis supports water mediated recognition in the Trp repressor-operator system. EMBO J. 13, 367–372.

    PubMed  CAS  Google Scholar 

  26. Ogata K., Wodak S.J. 2002. Conserved water molecules in MHC class-I molecules and their putative structural and functional roles. Protein Eng. 15, 697–705.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Grishin.

Additional information

Original Russian Text © A.V. Grishin, A.V. Alexeevsky, S.A. Spirin, A.S. Karyagina, 2009, published in Molekulyarnaya Biologiya, 2009, Vol. 43, No. 4, pp. 666–674.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grishin, A.V., Alexeevsky, A.V., Spirin, S.A. et al. Conserved structural features of ETS domain-DNA complexes. Mol Biol 43, 612–619 (2009). https://doi.org/10.1134/S002689330904013X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689330904013X

Key words

Navigation