Skip to main content
Log in

Isolation and functional analysis of cotton universal stress protein promoter in response to phytohormones and abiotic stresses

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The 949 bp promoter fragment upstream from the translation initiation site of the GUSP gene encoding a universal stress protein was isolated from the genomic DNA of Gossypium arboreum. Some putative cis-acting elements involved in stress responses including E-box, ABRE, DPBF-box, and MYB-core elements were found in the promoter region. In an Agrobacterium-mediated transient expression assay, strong activation of the GUSP full promoter region occurred in tobacco leaves following dehydration, abscisic acid, salt, heavy metal, gibberellic acid and dark treatments. Deletion analysis of the promoter revealed that the dehydration, abscisic acid and salt responses were affected by the deletion between −208 and −949 bp and showed 2–4-fold induction. However, in response to dark, gibberellic acid and heavy metals the induction was only 2-fold. These findings further our understanding of the regulation of GUSP expression. This is an important study as no report of this universal stress protein promoter is available in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

GA3:

Gibberellic acid

RACE:

Random amplification of cDNA ends

MRE:

Metal response element

GUSP:

Gossypium universal stress protein

bZIP:

basic region leucine zipper

References

  1. Bray E.A., Bailey-Serres J., Weretilnyk E. 2000. Responses to abiotic stresses. In: Biochemistry and Molecular Biology of Plants. Eds. Gruissem W., Buchannan B., Jones R. Rockville, MD, pp. 1158–1249.

  2. Zhu J.K. 2001. Plant salt tolerance. Trends Plant Sci. 6, 66–71.

    Article  PubMed  CAS  Google Scholar 

  3. Knight H., Knight M.R. 2001. Abiotic stress signalling pathways: Specificity and cross-talk. Trends Plant Sci. 6, 262–267.

    Article  PubMed  CAS  Google Scholar 

  4. Bostock R.M. 2005. Signal crosstalk and induced resistance: Straddling the line between cost and benefit. Annu. Rev. Phytopathol. 43, 545–580.

    Article  PubMed  CAS  Google Scholar 

  5. Fujita M., Fujita Y., Noutoshi Y., Takahashi F., Narusaka Y. 2006. Crosstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol. 9, 436–442.

    Article  PubMed  Google Scholar 

  6. Walley J.W., Coughlan S., Hudson M.E., Covington M.F., Kaspi R., Banu G., Harmer S.L., Dehesh K. 2007. Mechanical stress induces biotic and abiotic stress responses via a novel cis-element. PLoS. Genet. 3, 172.

    Article  Google Scholar 

  7. Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K., Shinozaki K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell. 10, 1391–1406.

    CAS  Google Scholar 

  8. Jones R.L. 1973. Gibberellins: Their physiological role. Annu. Rev. Plant. Physiol. 24, 571–598.

    Article  CAS  Google Scholar 

  9. Skriver K., Mundy J. 1990. Gene expression in response to abscisic acid and osmotic stress. Plant Cell. 2, 503–512.

    Article  PubMed  CAS  Google Scholar 

  10. Skriver K., Olsen F.L., Rogers J.C., Mundy J. 1991. Cis-acting DNA elements responsive to gibberellin and its antagonist abscisic acid. Proc. Natl. Acad. Sci. USA. 88, 7266–7270.

    Article  PubMed  CAS  Google Scholar 

  11. Robertson M., Swain S.M., Chandler P.M., Olszewski N.E. 1998. Identification of a negative regulator of gibberellin action, HvSPY, in barley. Plant Cell. 10, 995–1007.

    Article  PubMed  CAS  Google Scholar 

  12. Chandler P.M., Robertson M. 1994. Gene expression regulated by absicic acid and its relation to stress tolerance. Annu. Rev. Plant Physiol. 45, 113–141.

    Article  CAS  Google Scholar 

  13. Bray E.A. 1997. Plant responses to water deficit. Trends Plant Sci. 2, 48–54.

    Article  Google Scholar 

  14. Teige M., Scheikl E., Eulgem T., Dóczi R., Ichimura K., Shinozaki K., Dangl J.L., Hirt H. 2004. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol. Cell. 15, 141–152.

    Article  PubMed  CAS  Google Scholar 

  15. Nystrom T., Neidhardt F.C. 1992. Cloning, mapping and nucleotide sequencing of a gene encoding a universal stress protein in Escherichia coli. Mol. Microbiol. 6, 3187–3198.

    Article  PubMed  CAS  Google Scholar 

  16. Nystrom T., Neidhardt F.C. 1993. Isolation and properties of a mutant of Escherichia coli with an insertional inactivation of the uspA gene, which encodes a universal stress protein. J. Bacteriol. 175, 3949–3956.

    PubMed  CAS  Google Scholar 

  17. Nystrom T., Neidhardt F.C. 1994. Expression and role of the universal stress protein, UspA, of Escherichia coli during growth arrest. Mol. Microbiol. 11, 537–544.

    Article  PubMed  CAS  Google Scholar 

  18. Maqbool A., Zahur M., Husnain T., Riazuddin S. 2008. Identification of GUSP1 & GUSP2, two drought responsive genes with homology to universal stress proteins in Gossypium arboreum. Plant Mol. Biol. Rep. DOI 10.1007/s11105-008-0049-0.

  19. Saha S., Callahan F.E., Douglas A.D., Creech J.B. 1997. Localization of cotton tissue on quality of extractable DNA, RNA, and protein. J. Cotton. Sci. 1, 10–40.

    CAS  Google Scholar 

  20. Yang Y., Li R., Qi M. 2000. In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J. 22, 543–551.

    Article  PubMed  CAS  Google Scholar 

  21. Bradford M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  22. Joshi C.P. 1987. An inspection of the domain between putative TATA-box and translation start site in 79 plant genes. Nucleic Acids Res. 15, 6643–6653.

    Article  PubMed  CAS  Google Scholar 

  23. Despres C., Subramaniam R., Matton D.P., Brisson N. 1995. The activation of the potato PR-10a gene requires the phosphorylation of the nuclear factor PBF-1. Plant Cell. 7, 589–598.

    Article  PubMed  CAS  Google Scholar 

  24. Urao T., Yamaguchi-Shinozaki K., Urao S., Shinozaki K. 1993. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell. 5, 1529–1539.

    Article  PubMed  CAS  Google Scholar 

  25. Rogers J.C., Lanahan M.B., Rogers S.W. 1994. The cisacting gibberellin response complex in high-pI-amylase gene promoters. Plant Physiol. 105, 151–158.

    Article  PubMed  CAS  Google Scholar 

  26. Simpson S.D., Nakashima K., Narusaka Y., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. 2003. Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J. 33, 259–270.

    Article  PubMed  CAS  Google Scholar 

  27. Kim S.Y., Chung H.J., Thomas T.L. 1997. Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system. Plant J. 11, 1237–1251.

    Article  PubMed  CAS  Google Scholar 

  28. Giuliano G., Pichersky E., Malik V.S., Timko M.P., Scolnik P.A., Cashmore A.R. 1988. An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proc. Natl. Acad. Sci. USA. 85, 7089–7093.

    Article  PubMed  CAS  Google Scholar 

  29. Lam E., Chua N.H. 1989. ASF-2, a factor that binds to the cauliflower mosaic virus 35S promoter and a conserved GATA motif in cab promoters. Plant Cell. 1, 1147–1156.

    Article  PubMed  CAS  Google Scholar 

  30. Davies W.J., Zhang J. 1991. Root signals and the regulation of growth and development of plants in drying soil. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 55–76.

    Article  CAS  Google Scholar 

  31. Tjaden G., Coruzzi G.M. 1994. A novel AT-rich DNA binding protein that combines an HMG I-like DNA binding domain with a putative transcription domain. Plant Cell. 6, 107–118.

    Article  PubMed  CAS  Google Scholar 

  32. Banyal S., Rai V. 2006. Reversal of osmotic stress effects by gibberellic acid in Brassica campestris. Recovery of hypocotyl growth, protein and RNA levels in the presence of GA. Physiol. Plant. 59, 111–114.

    Article  Google Scholar 

  33. Cercós M., Gómez-Cadenas A. Ho T.-H.D. 1999. Hormonal regulation of a cysteine proteinase gene, EPB-1, in barley aleurone layers: cis-and trans-acting elements involved in the co-ordinated gene expression regulated by gibberellins and abscisic acid. Plant J. 19, 107–118.

    Article  PubMed  Google Scholar 

  34. Qi X., Zhang Y., Chai T. 2007. Characterization of a novel plant promoter specifically induced by heavy metal and identification of the promoter regions conferring heavy metal responsiveness. Plant Physiol. 143, 50–59.

    Article  PubMed  CAS  Google Scholar 

  35. Harrison M.J., Lawton M.A., Lamb C.J., Dixon R.A. 1991. Characterization of a nuclear protein that binds to three elements within the silencer region of a bean chalcone synthase gene promoter. Proc. Natl. Acad. Sci. USA. 88, 2515–2519.

    Article  PubMed  CAS  Google Scholar 

  36. Solano R., Nieto C., Avila J., Canas L., Diaz I., Paz-Ares J. 1995. Dual DNA binding specificity of a petal epidermis-specific MYB transcription factor (MYB. Ph3) from Petunia hybrida. EMBO J. 14, 1773–1784.

    PubMed  CAS  Google Scholar 

  37. Ribeiro D.T., Farias L.P., Almeida J.D., Kashiwabara P.M., Ribeiro A.F.C., Silva-Filho M.C., Menck C.F.M., Sluys M.V. 2005. Functional characterization of the thi1 promoter region from Arabidopsis thaliana. J. Exp. Bot. 56, 1797–1804.

    Article  PubMed  CAS  Google Scholar 

  38. Yanagisawa S., Schmidt R.J. 1999. Diversity and similarity among recognition sequences of Dof transcription factors. Plant J. 17, 209–214.

    Article  PubMed  CAS  Google Scholar 

  39. Park H.C., Kim M.L., Kang Y.H., Jeon J.M., Yoo J.H., Kim M.C., Park C.Y., Jeong J.C., Moon B.C., Lee J.H., Yoon H.W., Lee S.H., Chung W.S., Lim C.O., Lee S.Y., Hong J.C., Cho M.J. 2004. Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol. 135, 2150–2161.

    Article  PubMed  CAS  Google Scholar 

  40. Wang Z.Y., Kenigsbuch D., Sun L., Harel E., Ong M.S., Tobin E.M. 1997. A myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene. Plant Cell. 9, 491–507.

    Article  PubMed  CAS  Google Scholar 

  41. Chen W., Provart N., Glazebrook J., Katagiri F., Chang H.S., Eilgem T., Mauch F., Luan S., Zou G., Whitham S.A., Budworth P.R., Tao Y., Xie Z., Chen X., Lam S., Kreps J.A., Harper J.F., Si-Ammour A., Mauch-Mani B., Heinlein M., Kobayashi K., Hohn T., Dangl J.L., Wang X., Zhu T. 2002. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell. 14, 559–574.

    Article  PubMed  CAS  Google Scholar 

  42. Kagaya Y., Ohmiya K., Hattori T. 1999. RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res. 27, 470–478.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayyab Husnain.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zahur, M., Maqbool, A., Irfan, M. et al. Isolation and functional analysis of cotton universal stress protein promoter in response to phytohormones and abiotic stresses. Mol Biol 43, 578–585 (2009). https://doi.org/10.1134/S0026893309040086

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893309040086

Key words

Navigation