Skip to main content
Log in

Analysis of the 5′-leader regions of several plastid genes in protozoa of the phylum apicomplexa and red algae

  • Genomics. Transcriptomics. Proteomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Apicomplexan parasites contain so-called apicoplasts, which are similar to chloroplasts of red algae. Multiple alignments of the 5′-leader regions of plastid-encoded genes revealed several conserved noncoding regions in parasites as well as in red algae. The regions were assumed to be sites for RNA interactions with regulatory proteins. Conserved sites were found upstream of ycf24, which is required for [Fe-S] cluster development, and several other genes. In particular, a simultaneous regulation was predicted for ycf24, rps4, and rpo B in Toxoplasma gondii. The prediction agreed with the known data that apicoplasts are only required for a short time, but confer pathogenicity on T. gondii. Another site was predicted upstream of rpo B, which encodes the β subunit of RNA polymerase, in red algae Porphyra spp. and parasites Eimeria tenella and Theileria parva.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zerges W. 2000. Translation in chloroplasts. Biochimie. 82, 583–601.

    Article  PubMed  CAS  Google Scholar 

  2. Nickelsen J. 2003. Chloroplast RNA-binding proteins. Curr. Genet. 43, 392–399.

    Article  PubMed  CAS  Google Scholar 

  3. Seliverstov A.V., Lyubetsky V.A. 2006. Translation regulation of intron containing genes in chloroplasts. J. Bioinformat. Comput. Biol. 4, 783–793.

    Article  CAS  Google Scholar 

  4. Lemieux C., Otis C., Turmel M. 2007. A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies. BMC Biology. 5, 1–17.

    Article  Google Scholar 

  5. Balashov Yu.S. 1998. Iksodovye kleshchi — parazity i perenoschiki infektsii (Ixodid Ticks: Parasites and Infection Vectors), St. Petersburg: Nauka.

    Google Scholar 

  6. Beyer T.V. 1992. Opportunistic infections of protozoan nature. Tsitologiya. 34, 26–27.

    Google Scholar 

  7. Brayton K.A., Lau A.O.T., Herndon D.R., et al. 2007. Genome sequence of Babesia bovis and comparative analysis of apicomplexan hemoprotozoa. PLoS Pathogens. 3, e148.

    Article  Google Scholar 

  8. Zhu G., Marchewka M.J., Keithly J.S. 2000. Cryptosporidium parvum appears to lack a plastid genome. Microbiology. 146, 315–321.

    PubMed  CAS  Google Scholar 

  9. Rangachari K., Davis C.T., Eccleston J.F., Hirst E.M.A., Saldanha J.W., Strath M., Wilson R.J.M. 2002. SufC hydrolyzes ATP and interacts with SufB from Thermotoga maritima. FEBS Letters. 514, 225–228.

    Article  PubMed  CAS  Google Scholar 

  10. Eccleston J.F., Petrovic A., Davis C.T., Rangachari K., Wilson R.J.M. (Iain). 2006. The kinetic mechanism of the SufC ATPase. J. Biol. Chem. 281, 8371–8378.

    Article  PubMed  CAS  Google Scholar 

  11. Vollmer M., Thomsen N., Wiek S., Seeber F. 2001. Apicomplexan parasites possess distinct nuclear-encoded, but Apicoplast-localized, plant-type ferredoxin-NADP+ reductase and ferredoxin. J. Biol. Chem. 276, 5483–5490.

    Article  PubMed  CAS  Google Scholar 

  12. Thomsen-Zieger N., Schachtner J., Seeber F. 2003. Apicomplexan parasites contain a single lipoic acid synthase located in the plastid. FEBS Letters. 547, 80–86.

    Article  PubMed  CAS  Google Scholar 

  13. Muro-Pastor M.I., Florencio F.J. 2003. Regulation of ammonium assimilation in cyanobacteria. Plant Physiol. Biochem. 41, 595–603.

    Article  CAS  Google Scholar 

  14. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. 1997. The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.

    Article  PubMed  CAS  Google Scholar 

  15. Xu X.M., Adams S., Chua N.-H., Moller S.G. 2005. AtNAP1 represents an atypical SufB protein in Arabidopsis plastids. J. Biol. Chem. 280, 6648–6654.

    Article  PubMed  CAS  Google Scholar 

  16. Wilson R.J.M. (Iain), Rangachari K., Saldanha J.W., Rickman L., Buxton R.S., Eccleston J.F. 2003. Parasite plastids: Maintenance and functions. Phil. Trans. R. Soc. Lond. B. 358, 155–164.

    Google Scholar 

  17. Mazumdar J., Wilson E.H., Masek K., Hunter C.A., Striepen B. 2006. Apicoplast fatty acid synthesis is essential for organelle biogenesis and parasite survival in Toxoplasma gondii. Proc. Nat. Acad. Sci. USA. 103, 13192–13197.

    Article  PubMed  CAS  Google Scholar 

  18. Fleige T., Fischer K., Ferguson D.J.P., Gross U., Bohne W. 2007. Carbohydrate metabolism in the Toxoplasma gondii Apicoplast: localization of three glycolytic isoenzymes, the single pyruvate dehydrogenase complex, and a plastid phosphate translocator. Eucaryotic Cell. 6, 984–996.

    Article  CAS  Google Scholar 

  19. Passador L., Linn T. 1992. An internal region of rpoB is required for autogenous translational regulation of the subunit of Escherichia coli RNA polymerase. J. Bacteriol. 174, 7174–7179.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Seliverstov.

Additional information

Original Russian Text © T.A. Sadovskaya, A.V. Seliverstov, 2009, published in Molekulyarnaya Biologiya, 2009, Vol. 43, No. 4, pp. 599–604.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadovskaya, T.A., Seliverstov, A.V. Analysis of the 5′-leader regions of several plastid genes in protozoa of the phylum apicomplexa and red algae. Mol Biol 43, 552–556 (2009). https://doi.org/10.1134/S0026893309040037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893309040037

Key words

Navigation