Skip to main content
Log in

Structural and functional analysis of a new retrotransposon class in Drosophila species

  • To the Anniversary of the Institute Of Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Several copies of the Penelope transposable element, previously described in Drosophila virilis, have been studied in different D. virilis strains and D. melanogaster strains transformed with P-based constructs bearing a full-size Penelope copy. Most Penelope copies in both species have large terminal inverted repeats (TIRs) and deletions of various sizes at the 5′ ends of their ORFs. Junctions between TIRs and ORFs usually have microhomologies of various lengths, which allowed a hypothesis explaining the emergence of these complex structures at the molecular level to be put forward. Most Penelope copies have a 34 bp long direct repeat at the ORF ends. Full-size and truncated Penelope copies are usually surrounded by target site duplications of various lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arkhipova I.R., Pyatkov K.I., Meselson M., Evgen’ev M.B. 2003. Retroelements containing introns in diverse invertebrate taxa. Nature Genet. 33, 123–124.

    Article  PubMed  CAS  Google Scholar 

  2. Evgen’ev M.B., Arkhipova I.R. 2005. Penelope-like elements, a new class of retroelements: Distribution, function and possible evolutionary significance. Cytogenet. Genome Res. 110, 510–521.

    Article  PubMed  Google Scholar 

  3. Arkhipova I. 2006. Distribution and phylogeny of Penelope-like elements in eukaryotes. Syst. Biol. 6, 875–885.

    Article  Google Scholar 

  4. Petrov D., Schutzman J., Hartl D., Lozovskaya E. 1995. Diverse transposable elements are mobilized in hybrid dysgenesis in Drosophila virilis. Proc. Natl. Acad. Sci. USA. 92, 8050–8054.

    Article  PubMed  CAS  Google Scholar 

  5. Evgen’ev M., Zelentsova H., Shostak N., Kozitsina M., Barsky V., Lankenau D., Corces V. 1997. Penelope, a new family of transposable elements and its possible role in hybrid dysgenesis in Drosophila virilis. Proc. Natl. Acad. Sci. USA. 94, 196–201.

    Article  PubMed  Google Scholar 

  6. Vieira J., Vieira C.P., Hartl D.L., Lozovskaya E.R. 1998. Factors contributing to the hybrid dysgenesis syndrome in Drosophila virilis. Genet. Res. 71, 109–117.

    Article  PubMed  CAS  Google Scholar 

  7. Dalle Nogare D.E., Clark M.S., Elgar G., Frame I.G., Poulter R.T. 2002. Xena, a full-length basal retroelement from tetraodontid fish. Mol. Biol. Evol. 19, 247–255.

    Google Scholar 

  8. Pyatkov K.I., Arkhipova I.R., Malkova N.V., Finnegan D.J., Evgen’ev M.B. 2004. Reverse transcriptase and endonuclease activities encoded by Penelope-like retroelements. Proc. Natl. Acad. Sci. USA. 101, 14719–14724.

    Article  PubMed  CAS  Google Scholar 

  9. Lyozin G.T., Makarova K.S., Velikodvorskaja V.V., Zelentsova H.S., Khechumian R.R., Kidwell M.G., Koonin E.V., Evgen’ev M.B. 2001. The structure and evolution of Penelope in the virilis species group of Drosophila: An ancient lineage of retroelements. J. Mol. Evol. 52, 445–456.

    PubMed  CAS  Google Scholar 

  10. Pyatkov K.I., Shostak N.G., Zelentsova E.S., Lyozin G.T., Melekhin M.I., Finnegan D.J., Kidwell M.G., Evgen’ev M.B. 2002. Penelope retroelements from Drosophila virilis are active after transformation Drosophila melanogaster. Proc. Natl. Acad. Sci. USA. 99, 16150–16155.

    Article  PubMed  CAS  Google Scholar 

  11. Spicer G.S. 1992. Reevaluation of the phylogeny of the Drosophila virilis species group (Diptera, Drosophilidae). Ann. Entomol. Soc. Am. 85, 11–25.

    Google Scholar 

  12. Spradling A.C. 1986. P-element-mediated transformation. In: Drosophila: A Practical Approach. Ed. Roberts D.B. Oxford: CIRL Press, pp. 175–197.

    Google Scholar 

  13. Wang W., Swevers L., Iatrou K. 2000. Mariner (Mos1) transposase and genomic integration of foreign gene sequences in Bombyx mori cells. Insect. Mol. Biol. 2, 145–155.

    Article  Google Scholar 

  14. Sambrook J., Fritsch E.F., Maniatis T. 1989. Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.

    Google Scholar 

  15. Eggert H., Bergemann K., Sauweber H. 1998. Molecular screening for P-element insertions in a large genomic region of Drosophila melanogaster using polymerase chain reaction mediated by the vectorette. Genetics. 149, 1427–1434.

    PubMed  CAS  Google Scholar 

  16. Schostak N., Pyatkov K., Zelentsova E., Arkhipova I., Shagin D., Shagina I., Mudrik E., Blintsov A., Clark I., Finnegan D., Evgen’ev M. 2008. Molecular dissection of Penelope transposable element regulatory machinery. Nucleic Acids Res. 36, 2522–2529.

    Article  PubMed  CAS  Google Scholar 

  17. Arkhipova I.R., Penelope retrotransposons from D. willistoni. 2007. Repbase Reports. 7, 661–662.

    Google Scholar 

  18. Babushok D., Ostertag E., Courtney C.E., Choi J.M., Kazazian H. 2006. L1 integration in a transgenic mouse model. Genome Res. 16, 240–250.

    Article  PubMed  CAS  Google Scholar 

  19. Gilbert N., Lutz S., Morrish T., Moran J. 2005. Multiple fates of L1 retrotransposition intermediates in cultured human cells. Mol. Cell. Biol. 25, 7780–7795.

    Article  PubMed  CAS  Google Scholar 

  20. Kazazian H. 2004. Mobile elements: Drivers of genome evolution. Science. 303, 1626–1632.

    Article  PubMed  CAS  Google Scholar 

  21. Ostertag E., Kazazian H. 2001. Twin priming: A proposed mechanism for the creation of inversions in L1 retrotransposition. Genome Res. 11, 2059–2065.

    Article  PubMed  CAS  Google Scholar 

  22. Gilbert N., Lutz S., Moran J. 2002. Genomic deletions created upon LINE-1 retrotransposition. Cell. 110, 315–325.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Ravin.

Additional information

Original Russian Text © V.K. Ravin, M.B. Sukchev, E.S. Zelentsova, N.G. Shostak, M.B. Evgen’ev, 2009, published in Molekulyarnaya Biologiya, 2009, Vol. 43, No. 2, pp. 357–367.

These two authors made equal contributions to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravin, V.K., Sukchev, M.B., Zelentsova, E.S. et al. Structural and functional analysis of a new retrotransposon class in Drosophila species. Mol Biol 43, 329–338 (2009). https://doi.org/10.1134/S0026893309020150

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893309020150

Key words

Navigation