Advertisement

Molecular Biology

, Volume 43, Issue 2, pp 301–312 | Cite as

Disaccharide nucleosides as an important group of natural compounds

  • E. V. Efimtseva
  • I. V. Kulikova
  • S. N. MikhailovEmail author
To the Anniversary of the Institute of Molecular Biology

Abstract

The main structural features of disaccharide nucleosides, an important group of natural compounds, are reviewed. The preparation and properties of modified oligonucleotides constructed on their basis and the incorporation of reactive groups are summarized. Several examples are given for the use of the compounds to investigate the enzymes of nucleic acid metabolism.

Key words

disaccharide nucleosides oligonucleotides structure physicochemical and biological properties affinity modification enzymes of nucleic acid biosynthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dictionary of Natural Products on CD-ROM Version 9.2, February 2001. Chapman & Hall/CRC.Google Scholar
  2. 2.
    Efimtseva E.V., Mikhailov S.N. 2004. Disaccharide nucleosides. Usp. Khimii. 73, 435–448.Google Scholar
  3. 3.
    Efimtseva E.V., Kulikova I.V., Mikhailov S.N. 2007. Disaccharide nucleosides and their Incorporation into oligonucleotides. Cur. Org. Chem. 11, 337–354.CrossRefGoogle Scholar
  4. 4.
    Isono K. 1988. Nucleoside antibiotics: Structure, biological activity, and biosynthesis. J. Antibiot. 41, 1711–1739.PubMedGoogle Scholar
  5. 5.
    Isono K. 1991. Current progress on nucleoside antibiotics. Pharmacol. Ther. 52, 269–286.PubMedCrossRefGoogle Scholar
  6. 6.
    Takahashi M., Kagasaki T., Hosoya T., Takahashi S. 1993. Adenophostins A and B: potent agonist of inositol-1,4,5-trisphosphate receptor produced by Penicillium brevicompactum. Taxonomy, fermentation, isolation, physico-chemical and biological properties. J. Antibiot. 46, 1643–1647.PubMedGoogle Scholar
  7. 7.
    McCormick J., Li Y., McCormick K., Duynstee H.I., van Engen A.K., van der Marel G.A., Ganem B., van Boom J.H., Meinwald J. 1999. Structure and total synthesis of HF-7, a neuroactive glyconucleoside disulfate from the funnel-web spider Hololena curta. J. Am. Chem. Soc. 121, 5661–5665.CrossRefGoogle Scholar
  8. 8.
    Taggi A.E., Meinwald J., Schroeder F.C. 2004. A new approach to natural products discovery exemplified by the identification of sulfated nucleosides in spider venom. J. Am. Chem. Soc. 126, 10364–10369.PubMedCrossRefGoogle Scholar
  9. 9.
    Uchida K., Suzuki Y. 2003. Formation of 3′-O-β-galactosyl compounds of 5-bromouridine by Sporobolomyces singularis. Biosci. Biotechnol. Biochem. 67, 643–645.PubMedCrossRefGoogle Scholar
  10. 10.
    Auer C.A., Cohen J.D. 1993. Identification of a benzyladenine disaccharide conjugate produced during shoot organogenesis in Petunia leaf explants. Plant Physiol. 102, 541–545.PubMedCrossRefGoogle Scholar
  11. 11.
    Veal G.J., Back D.J. 1995. Metabolism of Zidovudine. Gen. Pharmacol. 26, 1469–1475.PubMedGoogle Scholar
  12. 12.
    Barbier O., Turgeon D., Girard C., Green M.D., Tephly T.R., Hum D.W., Belanger A. 2000. 3′-azido-3′-deoxythimidine (AZT) is glucuronidated by human UDP-glucuronosyltransferase 2B7 (UGT2B7). Drug Metab. Dispos. 28, 497–502.PubMedGoogle Scholar
  13. 13.
    Zimmerman C.L., Iyer K.R., Faudskar A.L., Remmel R.P. 1993. Glucuronidation as a transient intermediate metabolic step in the elimination of (−)-carbovir: Identification of (−)-carbovir-5′-O-glucuronide in rat bile. Drug Metab. Dispos. 21, 902–910.PubMedGoogle Scholar
  14. 14.
    Desmoulin F., Gilard V., Malet-Martino M., Martino R. 2002. Metabolism of capecitabine, an oral fluorouracil prodrug: (19)F NMR studies in animal models and human urine. Drug Metab. Dispos. 30, 1221–1229.PubMedCrossRefGoogle Scholar
  15. 15.
    Keith G., Glasser A.-L., Desgres J., Kuo K.C., Gehrke C.W. 1990. Identification and structural characterization of O-β-ribosyl-(1″–2′)-adenosine-5″-phosphate in yeast methionone initiator tRNA. Nucleic Acids Res. 18, 5989–5993.PubMedCrossRefGoogle Scholar
  16. 16.
    Kiesewetter S., Ott G., Sprinzl M. 1990. The role of modified purine 64 in initiator/elongator discrimination of tRNAMet from yeast and wheat germ. Nucleic Acids Res. 18, 4677–4682.PubMedCrossRefGoogle Scholar
  17. 17.
    Glasser A.-L., Desgres J., Heitzler J., Gehrke C.W., Keith G. 1991. O-Ribosyl-phosphate purine as a constant modified nucleotide located at position 64 in cytoplasmic initiator tRNAsMet of yeasts. Nucleic Acids Res. 19, 5199–5203.PubMedCrossRefGoogle Scholar
  18. 18.
    Basavappa R., Sigler P.B. 1991. The 3 Å crystal structure of yeast initiator tRNA: Functional implications in initiator/elongator discrimination. EMBO J. 10, 3105–3111.PubMedGoogle Scholar
  19. 19.
    Sugimura T., Miwa M. 1994. Poly(ADP-ribose): Historical perspective. Mol. Cell. Biochem. 138, 5–12.PubMedCrossRefGoogle Scholar
  20. 20.
    D’Amours D., Desnoyers S., D’silva I., Poirier G.G. 1999. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem. J. 342, 249–268.PubMedCrossRefGoogle Scholar
  21. 21.
    Hassa P.O., Haenni S.S., Elser M., Hottiger M.O. 2006. Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol. Mol. Biol. Rev. 70, 789–829.PubMedCrossRefGoogle Scholar
  22. 22.
    Ferro A.M., Oppenheimer N.J. 1978. Structure of a poly(adenosine diphosphoribose) monomer: 2′-(5″-phosphoribosyl)-5′-adenosine monophosphate. Proc. Natl. Acad. Sci. USA. 75, 809–813.PubMedCrossRefGoogle Scholar
  23. 23.
    Schneider K., Dimroth P., Bott M. 2000. Identification of triphosphoribosyl-dephospho-CoA as precursor of the citrate lyase prosthetic group. FEBS Lett. 483, 165–168.PubMedCrossRefGoogle Scholar
  24. 24.
    Hoenke S., Wild M.R., Dimroth P. 2000. Biosynthesis of triphosphoribosyl-dephospho-coenzyme A, the precursor of the prosthetic group of malonate decarboxylase. Biochemistry. 39, 13223–13232.PubMedCrossRefGoogle Scholar
  25. 25.
    Nauwelaerts K., Efimtseva E.V., Mikhailov S.N., Herdewijn P. 2004. Disaccharide nucleosides, an important group of natural compounds. In: Frontiers in Nucleosides and Nucleic Acids. Eds. Schinazi R.F., Liotta D.C. Tucker, GA: IHL Press, pp. 187–220.Google Scholar
  26. 26.
    Knapp S. 1995. Synthesis of complex nucleoside antibiotics. Chem. Rev. 95, 1859–1876.CrossRefGoogle Scholar
  27. 27.
    Lerner L.M. 1991. Synthesis and properties of various disaccharide nucleosides. In: Chemistry of Nucleosides and Nucleotides, vol. 2. Ed. Townsend L.B. N.Y.: Plenum, pp. 27–79.Google Scholar
  28. 28.
    Vorbrüggen H., Ruh-Pohlenz C. 2001. Handbook of Nucleoside Synthesis. N.Y.: Wiley.Google Scholar
  29. 29.
    Pellissier H. 2005. Use of O-glycosylation in total synthesis. Tetrahedron. 61, 2947–2993.CrossRefGoogle Scholar
  30. 30.
    Mikhailov S.N., De Bruyn A., Herdewijn P. 1995. Synthesis and properties of some 2′-O-β-D-ribofuranosylnucleosides. Nucleosides Nucleotides. 14, 481–484.CrossRefGoogle Scholar
  31. 31.
    Mikhailov S.N., Efimtseva E.V., Gurskaya G.V., Zavodnik V.E., de Bruyn A., Janssen G., Rozenski J., Herdewijn P. 1997. An efficient synthesis and physicochemical properties of 2′-O-β-D-ribofuranosyl-nucleosides, minor tRNA components. J. Carbohydr. Chem. 16, 75–92.CrossRefGoogle Scholar
  32. 32.
    Mikhailov S.N., Efimtseva E.V., Rodionov A.A., Bobkov G.V., Kulikova I.V., Herdewijn P. 2006. Synthesis of 2′-O-β-D-ribofuranosylnucleosides. In: Current Protocols in Nucleic Acid Chemistry, Unit 1.14.1–1.14.19. Suppl. 27. N.Y.: Wiley.Google Scholar
  33. 33.
    Mikhailov S.N., De Clercq E., Herdewijn P. 1996. Ribosylation of pyrimidine 2′-deoxynucleosides. Nucleosides Nucleotides. 15, 1323–1334.CrossRefGoogle Scholar
  34. 34.
    Gulyaeva I.V., Neuvonen K., Lonnberg H., Rodionov A.A., Shcheveleva E.V., Bobkov G.V., Efimtseva E.V., Mikhailov S.N. 2004. Effective anomerisation of 2′-deoxyadenosine derivatives during disaccharide nucleoside synthesis. Nucleosides Nucleotides Nucleic Acids. 23, 1849–1864.PubMedCrossRefGoogle Scholar
  35. 35.
    Rodionov A.A., Efimtseva E.V., Fomitheva M.V., Padyukova N.Sh., Mikhailov S.N. 1999. Disaccharide nucleosides: Synthesis of pyrimidine 5′-O-β-D-ribofuranosylribo- and 2′-deoxyribonucleosides. Bioorg. Khim. 25, 203–210.Google Scholar
  36. 36.
    Mikhailov S.N., Rodionov A.A., Efimtseva E.V., Fomitcheva M.V., Padyukova N.Sh., Herdewijn P., Oivanen M. 1997. Preparation of pyrimidine 5′-O-β-D-ribofuranosyl-nucleosides, and hydrolytic stability of O-Dribofuranosyl-nucleosides. Carbohydrate Lett. 2, 321–328.Google Scholar
  37. 37.
    Mikhailov S.N., Rodionov A.A., Efimtseva E.V., Ermolinsky B.S., Fomitcheva M.V., Padyukova N.Sh., Rothenbacher K., Lescrinier E., Herdewijn P. 1998. Formation of trisaccharide nucleoside during disaccharide nucleoside synthesis. Eur. J. Org. Chem. 11, 2193–2199.CrossRefGoogle Scholar
  38. 38.
    Efimtseva E.V., Bobkov G.V., Mikhailov S.N., van Aerschot A., Schepers G., Busson R., Rozenski J., Herdewijn P. 2001. Oligonucleotides containing disaccharide nucleosides. Helv. Chim. Acta. 84, 2387–2397.CrossRefGoogle Scholar
  39. 39.
    Gurskaya G.V., Zhukhlistova N.E., nekrasov Yu.V., Bobkob G.V., Efimtseva E.V., Mikhailov S.N. 2005. Disaccharide nucleosides: Crystalline and molecular structure of 2′-O-β-D-ribopyranosylcytidine. Kristallografiya. 50, 440–444.Google Scholar
  40. 40.
    Rodionov A.A., Efimtseva E.V., Mikhailov S.N. 1999. Synthesis of O-β-D-ribofuranosyl-(1″–2′)-adenosine-5″-O-phosphate. Nucleosides Nucleotides. 18, 623–624, 623–624.CrossRefGoogle Scholar
  41. 41.
    Rodionov A.A., Efimtseva E.V., Mikhailov S.N., Rozenski J., Luyten I., Herdewijn P. 2000. Synthesis and properties of O-β-D-ribofuranosyl-(1-2)-adenosine-5″-Ophosphate and its derivatives. Nucleosides Nucleotides Nucleic Acids. 19, 1847–1859.PubMedCrossRefGoogle Scholar
  42. 42.
    Efimtseva E.V., Shelkunova A.A., Mikhailov S.N., Nauwelaerts K., Rozenski J., Lescrinier E., Herdewijn P. 2003. Synthesis and properties of O-β-D-ribofuranosyl-(1′→2′)-guanosine-5″-O-phosphate and its derivatives. Helv. Chim. Acta. 86, 504–514.CrossRefGoogle Scholar
  43. 43.
    Mikhailov S.N., Kulikova I.V., Nauwelaerts K., Herdewijn P. 2008. Synthesis of 2′-O-α-D-ribofuranosyladenosine, monomeric unit of poly(ADP-ribose). Tetrahedron. 664, 2871–2876.CrossRefGoogle Scholar
  44. 44.
    Kulikova I.V., Muradova D.A., Varizhuk I.S., Mikhailov S.N. 2008. Stereospecific Synthesis of 2′-O-α-D-ribofuranosylnucleosides. Collection Symp. Series. 110, 155–158.Google Scholar
  45. 45.
    Curtin N.J. 2005. PARP inhibitors for cancer therapy. 2005. Expert Rev. Mol. Med. 7, 1–20.PubMedCrossRefGoogle Scholar
  46. 46.
    Jagtap P., Szabó C. 2005. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nature Rev. Drug Discov. 4, 421–440.CrossRefGoogle Scholar
  47. 47.
    Luyten I., Esnouf R.M., Mikhailov S.N., Efimtseva E.V., Michiels P., Heus H.A., Hilbers C.W., Herdewijn P. 2000. Solution structure of a RNA decamer duplex, containing 9-[(2-O-(β-D-ribofuranosyl)-(β-D-ribofuranosyl] adenine, a special residue in lower eukaryotic initiator tRNAs. Helv. Chim. Acta. 83, 1278–1289.CrossRefGoogle Scholar
  48. 48.
    Andreeva O.I., Golubeva A.S., Kochetkov S.N., van Aerschot A., Herdewijn P., Efimtseva E.V., Ermolinsky B.S., Mikhailov S.N. 2002. An additional 2′-ribofuranose residue at a specific position of DNA primer prevents its elongation by HIV-1 reverse trancriptase. Bioorg. Med. Chem. Lett. 12, 681–684.PubMedCrossRefGoogle Scholar
  49. 49.
    Golubeva A.S., Ermolinsky B.S., Efimtseva E.V., Tunitskaya V.L., van Aerschot A., Herdewijn P., Mikhailov S.N., Kochetkov S.N. 2004. Interaction of HIV-1 reverse transcriptase with modified oligonucleitude primers containing 2′-O-β-D-ribofuranosyladenosine. Biokhimiya. 69, 164–171.Google Scholar
  50. 50.
    Ermolinsky B.S., Mikhailov S.N. 2000. Periodate oxidation in chemistry of nucleic acids: Dialdehyde derivatives of nucleosides, nucleotides, and oligonucleotides. Bioorg. Khim. 26, 483–504.Google Scholar
  51. 51.
    Mikhailov S.N., Efimtseva E.V. 2002. Disaccharide nucleosides and oligonucleotides on their basis: New tools for the study of enzymes of nucleic acids metabolism. Biokhimiya. 67, 1374–1384.Google Scholar
  52. 52.
    Tunitskaya V.L., Rusakova E.E., Memelova L.V., Kochetkov S.N., van Aerschot A., Herdewijn P., Efimtseva E.V., Ermolinsky B.S., Mikhailov S.N. 1999. The mapping of T7 RNA polymerase active site with novel reagents — oligonucleotides with reactive dialdehyde groups. FEBS Lett. 442, 20–24.PubMedCrossRefGoogle Scholar
  53. 53.
    Brevnov M.G., Gritsenko O.M., Mikhailov S.N., Efimtseva E.V., Ermolinsky B.S., van Aerschot A., Herdewijn P., Repyk A.V., Gromova E.S. 1997. DNA duplexes with reactive dialdehyde groups as novel reagents for crosslinking to restriction-modification enzymes. Nucleic Acids Res. 25, 3302–3309.PubMedCrossRefGoogle Scholar
  54. 54.
    Gritsenko O.M., Koudan E.V., Mikhailov S.N., Ermolinsky B.S., van Aerschot A., Herdewijn P., Gromova E.S. 2002. Affinity modification of ECORII DNA methyltransferase by the dialdehyde-substituted DNA duplexes: Mapping the enzyme region that interacts with DNA. Nucleosides Nucleotides Nucleic Acids. 21, 753–764.PubMedCrossRefGoogle Scholar
  55. 55.
    Gritsenko O.M., Mikhailov S.N., Efimtseva E.V., van Aerschot A., Herdewijn P., Gromova E.S. Probing the MvaI methyltransferase region that interacts with DNA: Affinity labeling with the dialdehyde-containing DNA duplexes. 2000. Nucleosides Nucleotides Nucleic Acids. 19, 1805–1820.Google Scholar
  56. 56.
    Efimtseva E.V., Shelkunova A.A., Mikhailov S.N., Nauwelaerts K., Rozenski J., Lescrinier E., Herdewijn P. 2003. Synthesis and properties of phosphorylated 3′-O-β-D-ribofuranosyl-2′-deoxythymidine. Nucleosides Nucleotides Nucleic Acids. 22, 359–371.PubMedCrossRefGoogle Scholar
  57. 57.
    Nauwelaerts K., Vastmans K., Froeyen M., Kempeneers V., Rozenski J., Rosemeyer H., van Aerschot A., Busson R., Lacey J. C., Efimtseva E.V., Mikhailov S.N., Lescrinier E., Herdewijn P. 2003. Cleavage of DNA without loss of genetic information by incorporation of a disaccharide nucleoside. Nucleic Acids Res. 31, 6758–6769.PubMedCrossRefGoogle Scholar
  58. 58.
    Mikhailov S.N., Efimtseva E.V., Rodionov A.A., Shelkunova A.A., Rozenski J., Emmerechts G., Schepers G., van Aerschot A., Herdewijn P. 2005. Synthesis of RNA containing O-β-D-ribofuranosyl-(1″−2′)-adenosine-5″-O-phosphate and 1-methyladenosine, minor components of tRNA. Chemistry & Biodiversity. 2, 1153–1163.CrossRefGoogle Scholar
  59. 59.
    Mikhailov S.N., Rozenski J., Efimtseva E.V., Busson R., van Aerschot A., Herdewijn P. 2002. Chemical incorporation of 1-methyladenosine into oligonucleotides. Nucleic Acids Res. 30, 1124–1131.PubMedCrossRefGoogle Scholar
  60. 60.
    Bobkov G.V., Brilliantov K.V., Mikhailov S.N., Rozenski J., van Aerschot A., Herdewijn P. 2006. Synthesis of oligoribonucleotides containing pyrimidine 2′-O-[(hydroxyalkoxy)methyl]ribonucleosides. Collection Czech. Chem. Comm. 71, 804–819.CrossRefGoogle Scholar
  61. 61.
    Mikhailov S.N., Bobkov G.V., Brilliantov K.V., Rozenski J., van Aerschot A., Herdewijn P., Fisher M.H., Juliano R.L. 2007. 2′-O-Hydroxyalkoxymethylribonucleosides and their incorporation into oligoribonucleotides. Nucleosides Nucleotides Nucleic Acids, 26, 1509–1512.PubMedCrossRefGoogle Scholar
  62. 62.
    Bobkov G.V., Mikhailov S.N., van Aerschot A., Herdewijn P. 2008. Phosphoramidite building blocks for efficient incorporation of 2′-O-aminoethoxy- (and propoxy-) methyl-nucleosides into oligonucleotides. Tetrahedron. 64, 6238–6251.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • E. V. Efimtseva
    • 1
  • I. V. Kulikova
    • 1
  • S. N. Mikhailov
    • 1
    Email author
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations