Skip to main content
Log in

From liquid crystals to DNA nanoconstructions

  • To the Anniversary of the Institute of Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

This paper reviews the data obtained in our laboratory on the physicochemical properties of liquid-crystalline dispersions formed by double-stranded nucleic acids (DNA and RNA) and the specific features of their behavior in quasinematic layers. The basic data obtained in this field have been used as the background for elaboration of the DNA nanoconstructions carrying various guest molecules (chemical substances or biologically active compounds). Two theoretically feasible approaches to designing DNA nanoconstructions are compared. The unique properties of these nanoconstructions determining the area of their application are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yevdokimov Yu.M., Sychev V.V. 2008. Principles of the design of nanostructures with nucleic acid molecules as building blocks. Usp. Khim. 77. 194–206.

    Google Scholar 

  2. Yevdokimov Yu.M., Skuridin S.G., Nechipurenko Yu.D., Zakharov M.A., Salyanov V.I., Kurnosov A.A., Kuznetsov V.D., Nikiforov V.N. 2005. Nanoconstructions based on double-stranded nucleic acids. Int. J. Biol. Macromol. 36, 103–115.

    Article  PubMed  CAS  Google Scholar 

  3. Yevdokimov Yu.M., Salyanov V.I., Semenov C.V., Skuridin S.G. 2008. Zhidkokristallicheskie dispersii i nanokonstruktsii DNK (Liquid Crystalline Dispersions and DNA-Based Nanoconstructions), Ed. Yevdokimov Yu.M. Moscow: Radiotekhnika.

    Google Scholar 

  4. Seeman N.C. 2004. Nanotechnology and the double helix. Sci. Amer. 6, 64–69.

    Article  Google Scholar 

  5. Star A., Tu E., Niemann J. 2006. Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc. Natl. Acad. Sci. USA. 103. 921–926, 921–926.

    Article  PubMed  CAS  Google Scholar 

  6. Hahm J., Lieber C. 2004. Direct ultrasensitive electrical detection of DNA and DNA sequence variation using nanowire nanosensors. Nano Lett. 4. 51–54.

    Article  CAS  Google Scholar 

  7. Tang X., Bansaruntip S., Nakayama N. 2006. Carbon nanotube DNA sensor and sensing mechanism. Nano Lett. 6. 1632–1636.

    Article  PubMed  CAS  Google Scholar 

  8. Goldar A., Thomson H., Seddon J.M. 2008. Structure of DNA cholesteric spherulitic droplet dispersions. J. Phys.: Condens. Matter. 20. 1–9.

    Article  CAS  Google Scholar 

  9. Salyanov V.I., Pogrebnyak V.G., Skuridin S.G., Lortkipanidze G.B., Chidjavadze Z.G., Toryanik A.I., Evdokimov Yu.M. 1978. On the relationship between molecular structure of aquatic polyethylenglycol solutions and compaction of double-stranded DNA molecules. Mol. Biol. 12. 485–495.

    CAS  Google Scholar 

  10. Yevdokimov Yu.M. 1991. Liquid crystalline dispersions of nucleic acids. Izv. Akad. Nauk SSSR, Ser. Fiz. 55. 1804–1816.

    Google Scholar 

  11. Yevdokimov Yu.M., Skuridin S.G., Akimenko N.M. 1984. Liquid crystalline microphases of low-molecular-weight double-stranded nucleic acids and synthetic polynucleotides. Vysokomol. Soed., Ser. A. 26. 2403–2410.

    Google Scholar 

  12. Skuridin S.G., Shtykova E.V., Yevdokimov Yu.M. 1984. Formation kinetics of optically active liquid crystalline microphases of low-molecular DNA. Biofizika. 29. 337–338.

    PubMed  CAS  Google Scholar 

  13. Yevdokimov Yu.M., Skuridin S.G., Lortkipanidze G.B. 1992. Liquid-crystalline dispersions of nucleic acids. Liq. Crystals. 12. 1–16.

    Article  Google Scholar 

  14. Belyakov V.A., Orlov V.P., Semenov S.V., Skuridin S.G., Yevdokimov Yu.M. 1996. Comparison of calculated and observed CD spectra of liquid crystalline dispersions formed from double-stranded DNA and from DNA complexes with coloured compounds. Liq. Crystals. 20. 777–784.

    Article  CAS  Google Scholar 

  15. Yevdokimov Yu.M., Golo V.L., Salyanov V.I., Lortkipanidze G.B., Kats E.I. 2000. The “phantom” structure of solvent and packing of double-stranded molecules of nucleic acids in mesomorphic dispersion particles. Biofizika. 45. 1029–1038.

    CAS  Google Scholar 

  16. Pyatigorskaya T.L., Yevdokimov Yu.M., Varshavsky Ya.M. 1978. The compact form of synthetic polynucleotides: Relationship between circular dischroism spectra and secondary structure. Mol. Biol. 12. 404–412.

    CAS  Google Scholar 

  17. Gottarelli G., Spada G.P. 1994. Application of CD to the study of some cholesteric mesophases. In: Circular Dichroism: Principles and Applications. Eds. Nakanishi K., Berova N., Woody R.W. N.Y.: VCH, pp. 105–119.

    Google Scholar 

  18. Livolant F., Leforestier A. 1996. Condensed phases of DNA: Structures and phase transitions. Prog. Polym. Sci. 21. 1115–1164.

    Article  CAS  Google Scholar 

  19. Belyakov V.A., Orlov V.P., Semenov S.V., Skuridin S.G., Lortkipanidze G.B. Chernukha, B.A., Yevdokimov Yu.M. 1996. Some features of circular dichroism spectra of liqhid crystal dispersions of double-stranded DNA molecules and its complexes with colored compounds. Biofizika. 41. 1044–1055.

    CAS  Google Scholar 

  20. Yevdokimov Yu.M. 2002. Nucleic acids and chitosan. In: Khitin i khitozan. Poluchenie, svoistva i primenenie (Chitin and Chitosan: Production, Properties, and Applications). Eds. Skryabin K.G., Vikhoreva G.A., Varlamov V.P. Moscow: Nauka, pp. 178–200.

    Google Scholar 

  21. Yevdokimov Yu.M., Salyanov V.I., Palumbo M. 1995. Liquid crystalline state of DNA molecules complexed with biologically active compounds. Mol. Cryst. Liq. Cryst. 131. 285–297.

    Article  Google Scholar 

  22. Skuridin S.G., Dembo A.T., Yevdokimov Yu.M. 1985. Spatial liquid crystalline folding of double-stranded DNA molecules in solvents differing in cationic composition. Biofizika. 30. 750–757.

    CAS  Google Scholar 

  23. Wunderlich B. 1976. Macromolecular Physics. N.Y.: Academic Press, vol. 2.

    Google Scholar 

  24. Skuridin S.G., Lortkipanidze G.B., Musaev O.R., Yevdokimov Yu.M. 1985. Formation of liquid crystalline microphases of double-stranded nucleic acids and synthetic low-molecular-weight oligonucleotides. Vysokomol. Soed., Ser. A. 27. 2266–2273.

    CAS  Google Scholar 

  25. Stanley C.B., Hong H., Strey H.H. 2005. DNA cholesteric pitch as a function of density and ionic strength. Biophys. J. 89. 2552–2557.

    Article  PubMed  CAS  Google Scholar 

  26. Leonard M., Hong H., Easwar N., Strey H.H. 2001. Soft matter under osmotic stress. Polymer. 42. 5823–5827.

    Article  CAS  Google Scholar 

  27. Ubbink J., Odijk T. 1995. Polymer-induced and saltinduced toroids of hexagonal DNA. Biophys. J. 68. 54–61.

    Article  PubMed  CAS  Google Scholar 

  28. Grosberg A.Yu., Erukhimovich I.Ya., Shakhnovich A.I. 1981. On the theory of DNA compaction in polymer solution. Biofizika. 26. 897–905.

    PubMed  CAS  Google Scholar 

  29. Grasso D., Fasone S., La Rosa C., Salyanov V. 1991. A calorimetric study of the different thermal behaviour of DNA in the isotropic and liquid-crystalline states. Liq. Crystals. 9. 299–305.

    Article  CAS  Google Scholar 

  30. Yevdokimov Yu.M., Pyatigorskaya T.L., Belozerskaya N.A., Varshavskii Ya.M., Bekker M., Tsirver D. 1977. Compact form of DNA in solution: 11. Melting of compact DNA form produced in water-salt colutions containing polyethylenglycol. Mol. Biol. 11. 507–515.

    Google Scholar 

  31. Yevdokimov Yu.M., Sythev V.V. 2007. Nanotechnology and nucleic acids. Open Nanosci. J. 1. 19–31.

    CAS  Google Scholar 

  32. Zakharov M.A., Nechipurenko Yu.D., Lortkipanidze G.B., Yevdokimov Yu.M. 2005. Thermodynamic stability of nanoconstructions based on dounble-stranded DNA. Biofizika. 50. 1036–1041.

    PubMed  CAS  Google Scholar 

  33. Yevdokimov Yu.M., Salyanov V.I., Mchedlishvili B.V., Bykov V.A., Spener F., Palumbo M. 1999. Molecular design based on double-stranded nucleic acids and synthetic polynucleotides to create an integrated biosensor. Sensorn. Sistemy. 13. 82–91.

    Google Scholar 

  34. Nikiforov V.N., Kuznetsov V.D., Nechipurenko Yu.D., Salyanov V.I., Yevdokimov Yu.M. 2005. Magnetic properties of copper in nanobridges between spatially fixed DNA molecules. Pis’ma v Zh. Eksp. Teor. Fiz. 81. 327–329.

    Google Scholar 

  35. Yevdokimov Yu.M., Salyanov V.I., Zakharov M.A. 2001. A novel type of microscopic size chip based on double-stranded nucleic acids. Lab on a Chip. 1. 35–41.

    Article  PubMed  CAS  Google Scholar 

  36. Yevdokimov Yu.M., Salyanov V.I., Nechipurenko Yu.D., Skuridin S.G., Zakharov M.A., Spener F., Palumbo M. 2003. Molecular constructs (superstructures) with controlled properties based on double-stranded nucleic acids. Mol. Biol. 37. 340–355.

    Article  Google Scholar 

  37. Skuridin S.G., Dubinskaya V.A., Zakharov M.A., Lagutina M.A., Mineeva M.F., Rebrov L.B., Bykov V.A., Yevdokimov Yu.M. 2005. Identification of pharmaceutical substances with complexation properties using a bioanalytical test system based on integrated liquid-crystalline DNA microchips. Zhidk. Krist. Prakt. Primen. 3–4(13–14), 64–74.

    Google Scholar 

  38. Karrer P. 1960. Organic Chemistry. N.Y. Elsevier, 1950. Translated under the title Kurs organicheskoi khimii. Kolosov M.N., Ed. Moscow: Goskhimizdat.

    Google Scholar 

  39. Skuridin S.G., Dubinskaya V.A., Lagutina M.A., Rebrov L.B., Bykov V.A., Yevdokimov Yu.M. 2006. Biosensors based on liquid-cryspattile DNA structures: Production and applications in biology and medicine. Tekhnol. Zhivykh Sistem. 3. 3–27.

    CAS  Google Scholar 

  40. Biosensors: Fundamentals and Applications. Eds. Turner A.P.F., Karube I., Wilson G.S. Oxford: Oxiford Univ. Press, 1987.

    Google Scholar 

  41. Kazanskii K.S., Skuridin S.G., Kuznetsova V.I., Yevdokimov Yu.M. 1996. Polyethylenoxide hydrogels with immobilized particles of liquid-crystal deoxyribonucleic acid dispersion. Vysokomol. Soed., Ser. A. 38. 875–883.

    CAS  Google Scholar 

  42. Skuridin S.G., Yevdokimov Yu.M. 2004.Particles of liquid-crystal DNA dispersions as the basis for designing the sensing elements of biosensors. Biofizika. 49. 468–485.

    PubMed  CAS  Google Scholar 

  43. Skuridin S.G., Dubinskaya V.A., Lagutina M.A., Kompanets O.N., Golubev V.G., Rebrov L.B., Bykov V.A., Yevdokimov Yu.M. 2006. Identification of plant-derived genotoxicants with film-type biosensors. Biomed. Tekhnol. Radioelektron. 3. 38–43.

    Google Scholar 

  44. Yevdokimov Yu.M., Kazanskii K.S., Skuridin S.G., Varlamov V.P., 2004. RF Patent no. 2224781.

  45. Kazanskii K.S., Lagutina M.A., Skuridin S.G., Evdokimov Yu.M. 2007. Nanoconstructions based on double-stranded DNA in polyethylenoxide gels. Dokl. Akad. Nauk. 414, 768–771.

    Google Scholar 

  46. Fonseca V., Guba S. C., Fink L.M. 1999. Hyperhomocysteinemia and the endocrine system: Implications for atherosclerosis and thrombosis. Endocrine Rev. 20. 738–759.

    Article  CAS  Google Scholar 

  47. Accinni R., Campolo J., Bartesaghi S., De Leo G., Lucarelli C., Cursano C.F., Parodi O. 1998. High-performance liquid chromatographic determination of total plasma homocysteine with or without internal standards. J. Chromatography A. 828. 397–400.

    Article  CAS  Google Scholar 

  48. Gusev V.M., Kompanets O.N., Pavlov A.M., Pavlov M.A., Yevdokimov Yu.M., Skuridin S.G. 2008. 3rd Troitsk Conf. “Medical Physics and Innovations in Medicine”, Troitsk, Moscow Region, Russia. Al’manakh Klim. Med. 17,part 2, 311–312.

    Google Scholar 

  49. Skuridin S.G., Gulyaeva Zh.G., Yevdokimov Yu.M., 2006. Structural polymorphism of liquid-crystalline dispersions of double-stranded DNA complexed with synthetic polycations. Mol. Biol. 40. 1064–1073.

    Article  CAS  Google Scholar 

  50. Yevdokimov Yu.M., Salyanov V.I. 2003. Liquid crystalline dispersions of complexes formed by chitosan with double-stranded nucleic acids. Liq. Crystals. 30. 1057–1074.

    Article  CAS  Google Scholar 

  51. Karlik S.J., Eichhorn G.L., Lewis P.N., Crapper D.R. 1980. Interaction of aluminium species with deoxyribonucleic acid. Biochemistry. 19. 5991–5998.

    Article  PubMed  CAS  Google Scholar 

  52. Wedrychowski A., Schmidt W.N., Hlinica L.S. 1986. The in vivo cross-linking of proteins and DNA by heavy metals. J. Biol. Chem. 261, 3370–3376.

    PubMed  CAS  Google Scholar 

  53. Corain B., Bombi G.G., Zatta P. 1988. Different effects of covalent compounds in aluminium toxicology. Neurobiol. Aging. 9. 413–414.

    Article  PubMed  CAS  Google Scholar 

  54. Mumper R.J., Jay M. 1992. Formation and stability of lanthanide complexes and their encapsulation into polymeric microspheres. J. Phys. Chem. 96. 8626–8631.

    Article  CAS  Google Scholar 

  55. Qi Y.-H., Zhang Q.-Y., Xu L. 2002. Correlation analysis of the structure and stability constants of gadolinium (III) complexes. J. Chem. Inf. Comput. Sci. 42. 1471–1475.

    PubMed  CAS  Google Scholar 

  56. Lessing P.A., Erickson A.W. 2003. Synthesis and characterization of gadolinium phosphate neutron absorber. J. Europ. Ceramic Soc. 23. 3049–3057.

    Article  CAS  Google Scholar 

  57. Zhang P., Kimura T. 2006. Complexation of Eu (III) with dibutyl phosphate and tributyl phosphate. Solvent Extract. Ion Exchange. 24. 146–163.

    Google Scholar 

  58. Gersanovsky D., Colson P., Houssier C., Fredericq E. 1985. Terbium (3+) as a probe of nucleic acid structure: Does it alter the DNA conformation in solution? Biochim. Biophys. Acta. 35. 313–325.

    Google Scholar 

  59. Shih J.-L.A., Brugger R.M. 1992. Gadolinium as a neutron capture therapy agent. Med. Phys. 19. 733–744.

    Article  PubMed  CAS  Google Scholar 

  60. Martin R.F., D’Cunha G., Pardee M., Allen B.J. 1988. Induction of double-strand breaks following neutron capture by DNA-bound 157Gd. Int. J. Radiat. Res. 54. 205–208.

    CAS  Google Scholar 

  61. Yevdokimov Yu.M., Salyanov V.I., Kondrashina O.V., Borshevsky V.I., Semenov S.V., Gasanov A.A., Reshetov I.V., Kuznetsov V.D., Nikiforov V.N., Akulinichev S.V., Mordovskoi M.V., Potashev S.I., Skorkin V.M. 2005. Particles of liquid-crystalline dispersions formed by (nucleic acid-rare earth element) complexes as a potential platform for neutron capture therapy. Int. J. Biol. Macromol. 37. 165–173.

    Article  PubMed  CAS  Google Scholar 

  62. Akulinichev S.V., Skorkin V.M., Nikiforov V.N., Salyanov V.I., Evseev A.I., Kondrashina O.V., Yevdokimov Yu.M. 2006. A new biomaterial based on the (DNA-Gd) complex: 1. Determination of gadolinium concentration in particles. Med. Phys. 3. 64–69.

    Google Scholar 

  63. Kim M.-H., Ulibarri L., Keller D., Bustamante C. 1986. The psi-type dichroism of large molecular aggegates: 3. Calculations. J. Chem. Phys. 84. 2981–2989.

    Article  CAS  Google Scholar 

  64. Yevdokimov Yu.M., Salyanov V.I., Shtykova E.V., Dembo K.A., Volkov V.V., Spirin P.V., Slusheva A.S., Prassolov V.S. 2008. A transition in DNA molecule’s spatial ordering due to nano-scale structures changes. Open Nanosci. J. 2. 17–28.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Yevdokimov.

Additional information

Original Russian Text © Yu.M. Yevdokimov, V.I. Salyanov, S.G. Skuridin, 2009, published in Molekulyarnaya Biologiya, 2009, Vol. 43, No. 2, pp. 309–326.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yevdokimov, Y.M., Salyanov, V.I. & Skuridin, S.G. From liquid crystals to DNA nanoconstructions. Mol Biol 43, 284–300 (2009). https://doi.org/10.1134/S0026893309020113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893309020113

Key words

Navigation