Skip to main content
Log in

E(y)2, a novel component of the eukaryotic SAGA/TFTC complex, is involved in mRNP export from the nucleus and couples transcription with the nuclear pore

  • To the Anniversary of the Institute of Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

For many years, transcription was studied independently of the following steps of gene expression. A tight connection between different steps of gene expression became evident in recent years. This review discusses the new molecular mechanisms that coordinate transcription and mRNA export from the nucleus and couple transcription and the position of the gene in the nucleus. The new E(y)2 protein, which plays an important role in these processes, is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Georgiev P.G., Gerasimova T.I. 1989. Novel genes influencing the expression of the yellow locus and mdg4 (gypsy) in Drosophila melanogaster. Mol.Gen.Genet. 220, 121–126.

    Article  PubMed  CAS  Google Scholar 

  2. Georgiev P.G. 1994. Identification of mutations in three genes that interact with zeste in the control of white gene expression in Drosophila melanogaster. Genetics. 138, 733–739.

    PubMed  CAS  Google Scholar 

  3. Soldatov A., Nabirochkina E., Georgieva S., Belenkaja T., Georgiev P. 1999. TAFII40 protein is encoded by the e(y)1 gene: Biological consequences of mutations. Mol. Cell Biol. 19, 3769–3778.

    PubMed  CAS  Google Scholar 

  4. Shidlovskii Y.V., Krasnov A.N., Nikolenko J.V., Lebedeva L.A., Kopantseva M., Ermolaeva M.A., Ilyin Y.V., Nabirochkina E.N., Georgiev P.G., Georgieva S.G. 2005. A novel multidomain transcription coactivator SAYP can also repress transcription in heterochromatin. EMBO J. 24, 97–107.

    Article  PubMed  CAS  Google Scholar 

  5. Georgieva S., Nabirochkina E., Dilworth F.J., Eickhoff H., Becker P., Tora L., Georgiev P., Soldatov A. 2001. The novel transcription factor e(y)2 interacts with TAF(II)40 and potentiates transcription activation on chromatin templates. Mol. Cell Biol. 21, 5223–5231.

    Article  PubMed  CAS  Google Scholar 

  6. Krasnov A.N., Kurshakova M.M., Ramensky V.E., Mardanov P.V., Nabirochkina E.N., Georgieva S.G. 2005. A retrocopy of a gene can functionally displace the source gene in evolution. Nucleic Acids Res. 33, 6654–6661.

    Article  PubMed  CAS  Google Scholar 

  7. Kusch T., Guelman S., Abmayr S.M., Workman J.L. 2003. Two Drosophila Ada2 homologues function in different multiprotein complexes. Mol. Cell Biol. 23, 3305–3319.

    Article  PubMed  CAS  Google Scholar 

  8. Muratoglu S., Georgieva S., Papai G., Scheer E., Enunlu I., Komonyi O., Cserpan I., Lebedeva L., Nabirochkina E., Udvardy A., Tora L., Boros I. 2003. Two different Mol. Cell Biol. 23, 306–321 ADA2 homologues are present in distinct GCN5 histone acetyltransferase-containing complexes. Mol. Cell Biol. 23, 306–321.

    Article  PubMed  CAS  Google Scholar 

  9. Pankotai T., Komonyi O., Bodai L., Ujfaludi Z., Muratoglu S., Ciurciu A., Tora L., Szabad J., Boros I. 2005. The homologous Drosophila transcriptional adaptors ADA2a and ADA2b are both required for normal development but have different functions. Mol.Cell Biol. 25, 8215–8227.

    Article  PubMed  CAS  Google Scholar 

  10. Nagy Z., Tora L. 2007. Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene. 26, 5341–5357.

    Article  PubMed  CAS  Google Scholar 

  11. Brand M., Leurent C., Mallouh V., Tora L., Schultz P. 1999. Three-dimensional structures of the TAFII-containing complexes TFIID and TFTC. Science. 286, 2151–2153.

    Article  PubMed  CAS  Google Scholar 

  12. Martinez E., Kundu T.K., Fu J., Roeder R.G. 1998. A human SPT3-TAFII31-GCN5-L acetylase complex distinct from transcription factor IID. J. Biol. Chem. 273, 23781–23785.

    Article  PubMed  CAS  Google Scholar 

  13. Ogryzko V.V., Kotani T., Zhang X., Schiltz R.L., Howard T., Yang X.J., Howard B.H., Qin J., Nakatani Y. 1998. Histone-like TAFs within the PCAF histone acetylase complex. Cell. 94, 35–44.

    Article  PubMed  CAS  Google Scholar 

  14. Wieczorek E., Brand M., Jacq X., Tora L. 1998. Function of TAF(II)-containing complex without TBP in transcription by RNA polymerase II. Nature. 393, 187–191.

    Article  PubMed  CAS  Google Scholar 

  15. Powell D.W., Weaver C.M., Jennings J.L., McAfee K.J., He Y., Weil P.A., Link A.J. 2004. Cluster analysis of mass spectrometry data reveals a novel component of SAGA. Mol. Cell Biol. 24, 7249–7259.

    Article  PubMed  CAS  Google Scholar 

  16. Sanders S.L., Jennings J., Canutescu A., Link A.J., Weil P.A. 2002. Proteomics of the eukaryotic transcription machinery: Identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry. Mol. Cell Biol. 22, 4723–4738.

    Article  PubMed  CAS  Google Scholar 

  17. Brand M., Yamamoto K., Staub A., Tora L. 1999. Identification of TATA-binding protein-free TAFII-containing complex subunits suggests a role in nucleosome acetylation and signal transduction. J. Biol. Chem. 274, 18285–18289.

    Article  PubMed  CAS  Google Scholar 

  18. Guelman S., Suganuma T., Florens L., Swanson S.K., Kiesecker C.L., Kusch T., Anderson S., Yates J.R. III, Washburn M.P., Abmayr S.M., Workman J.L. 2006. Host cell factor and an uncharacterized SANT domain protein are stable components of ATAC, a novel dAda2A/dGcn5-containing histone acetyltransferase complex in Drosophila. Mol. Cell Biol. 26, 871–882.

    Article  PubMed  CAS  Google Scholar 

  19. Rabut G., Lenart P., Ellenberg J. 2004. Dynamics of nuclear pore complex organization through the cell cycle. Curr. Opin. Cell Biol. 16, 314–321.

    Article  PubMed  CAS  Google Scholar 

  20. Lebedeva L.A., Nabirochkina E.N., Kurshakova M.M., Robert F., Krasnov A.N., Evgen’ev M.B., Kadonaga J.T., Georgieva S.G., Tora L. 2005. Occupancy of the Drosophila hsp70 promoter by a subset of basal transcription factors diminishes upon transcriptional activation. Proc. Natl. Acad. Sci. USA. 102, 18087–18092.

    Article  PubMed  CAS  Google Scholar 

  21. Zhimulev I.F. 1999. Genetic organization of polytene chromosomes. Adv. Genet. 39, 1–589.

    Article  PubMed  CAS  Google Scholar 

  22. Rodriguez-Navarro S., Fischer T., Luo M.J., Antunez O., Brettschneider S., Lechner J., Perez-Ortin J.E., Reed R., Hurt E. 2004. Sus1, a functional component of the SAGA histone acetylase complex and the nuclear poreassociated mRNA export machinery. Cell. 116, 75–86.

    Article  PubMed  CAS  Google Scholar 

  23. Fischer T., Strasser K., Racz A., Rodriguez-Navarro S., Oppizzi M., Ihrig P., Lechner J., Hurt E. 2002. The mRNA export machinery requires the novel Sac3p-Thp1p complex to dock at the nucleoplasmic entrance of the nuclear pores. EMBO J. 21, 5843–5852.

    Article  PubMed  CAS  Google Scholar 

  24. Fischer T., Rodriguez-Navarro S., Pereira G., Racz A., Schiebel E., Hurt, E. 2004. Yeast centrin Cdc31 is linked to the nuclear mRNA export machinery. Nature Cell Biol. 6, 840–848.

    Article  PubMed  CAS  Google Scholar 

  25. Gallardo M., Luna R., Erdjument-Bromage H., Tempst P., Aguilera A. 2003. Nab2p and the Thp1p-Sac3p complex functionally interact at the interface between transcription and mRNA metabolism. J. Biol. Chem. 278, 24225–24232.

    Article  PubMed  CAS  Google Scholar 

  26. Gallardo M., Aguilera A. 2001. A new hyperrecombination mutation identifies a novel yeast gene, THP1, connecting transcription elongation with mitotic recombination. Genetics. 157, 79–89.

    PubMed  CAS  Google Scholar 

  27. Harrison D.A., Gdula D.A., Coyne R.S., Corces V.G. 1993. A leucine zipper domain of the suppressor of Hairy-wing protein mediates its repressive effect on enhancer function. Genes Dev. 7, 1966–1978.

    Article  PubMed  CAS  Google Scholar 

  28. Parnell T.J., Viering M.M., Skjesol A., Helou C., Kuhn E.J., Geyer P.K. 2003. An endogenous suppressor of hairy-wing insulator separates regulatory domains in Drosophila, Proc. Natl. Acad. Sci. USA. 100, 13436–13441.

    Article  PubMed  CAS  Google Scholar 

  29. Parnell T.J., Kuhn E.J., Gilmore B.L., Helou C., Wold M.S., Geyer P.K. 2006. Identification of genomic sites that bind the Drosophila suppressor of Hairy-wing insulator protein. Mol. Cell Biol. 26, 5983–5993.

    Article  PubMed  CAS  Google Scholar 

  30. Gerasimova T.I., Gdula D.A., Gerasimov D.V., Simonova O., Corces V.G. 1995. A Drosophila protein that imparts directionality on a chromatin insulator is an enhancer of position-effect variegation. Cell. 82, 587–597.

    Article  PubMed  CAS  Google Scholar 

  31. West A.G., Huang S., Gaszner M., Litt M.D., Felsenfeld G. 2004. Recruitment of histone modifications by USF proteins at a vertebrate barrier element. Mol. Cell. 16, 453–463.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Kurshakova.

Additional information

Original Russian Text © M.M. Kurshakova, E.N. Nabirochkina, S.G. Georgieva, 2009, published in Molekulyarnaya Biologiya, 2009, Vol. 43, No. 2, pp. 253–263.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurshakova, M.M., Nabirochkina, E.N. & Georgieva, S.G. E(y)2, a novel component of the eukaryotic SAGA/TFTC complex, is involved in mRNP export from the nucleus and couples transcription with the nuclear pore. Mol Biol 43, 232–240 (2009). https://doi.org/10.1134/S002689330902006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689330902006X

Key words

Navigation