Skip to main content
Log in

Transcription and its regulation in mammalian and human mitochondria

  • To the Anniversary of the Institute of Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

In eukaryotic cells, mitochondria are the primary source of ATP, which is generated by oxidative phosphorylation. Mammalian and human mitochondria contain their own genome, which is maternally inherited. Defects in mitochondrial gene expression result in a number of human diseases and contribute to aging. Transcription of mitochondrial genes is carried out by unique transcription machinery, consisting of a single-subunit bacteriophage T7-like mitochondrial RNA polymerase and several nuclear-encoded transcription factors. Mitochondrial transcription (and, consequently, oxidative phosphorylation) may be regulated by transcription initiation and termination factors and changes in ATP levels in response to alterations in cell metabolic demands. Recent data suggest that mitochondrial transcription is coordinated with other crucial processes, such as DNA replication and translation, indicating the importance of studies of the molecular mechanisms of mitochondrial gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brand M.D. 1997. Regulation analysis of energy metabolism. J. Exp. Biol. 200, 193–202.

    PubMed  CAS  Google Scholar 

  2. Kroemer G., Dallaporta Ç., Resche-Rigon M. 1998. The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60, 619–642.

    Article  PubMed  CAS  Google Scholar 

  3. Wallace D.C. 2005. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407.

    Article  PubMed  CAS  Google Scholar 

  4. Balaban R.S., Nemoto S., Finkel T. 2005. Mitochondria, oxidants, and aging. Cell. 120, 483–495.

    Article  PubMed  CAS  Google Scholar 

  5. Wei Y.H. 1998. Oxidative stress and mitochondrial DNA mutations in human aging. Proc. Soc. Exp Biol. Med. 217, 53–63.

    PubMed  CAS  Google Scholar 

  6. Gray M.W., Burger G., Lang B.F. 1999. Mitochondrial evolution. Science. 283, 1476–1481.

    Article  PubMed  CAS  Google Scholar 

  7. Graeber M.B., Muller U. 1998. Recent developments in the molecular genetics of mitochondrial disorders. J. Neurol. Sci. 153, 251–263.

    Article  PubMed  CAS  Google Scholar 

  8. Longley M.J., Graziewicz M.A., Bienstock R.J., Copeland W.C. 2005. Consequences of mutations in human DNA polymerase gamma. Gene. 354, 125–131.

    Article  PubMed  CAS  Google Scholar 

  9. Deschauer M., Kiefer R., Blakely EX., He L., Zierz S., TurnbuU D.M., Taylor R.W. 2003. A novel Twinkle gene mutation in autosomal dominant progressive external ophthalmoplegia. Neuromusc. Disord. 13, 568–572.

    Article  PubMed  Google Scholar 

  10. Jacobs H.T., Turnbull D.M. 2005. Nuclear genes and mitochondrial translation: A new class of genetic disease. Trends Genet. 21, 312–314.

    Article  PubMed  CAS  Google Scholar 

  11. Shadel G.S. 2004. Coupling the mitochondrial transcription machinery to human disease. Trends Genet. 20, 513–519.

    Article  PubMed  CAS  Google Scholar 

  12. Anderson S., Bankier A.T., Barrell B.G., de Bruijn M.H., Coulson A.R., Drouin J., Eperon I.C., Nierlich D.P., Roe B.A., Sanger F., Schreier P.H., Smith A.J., Staden R., Young I.G. 1981. Sequence and organization of the human mitochondrial genome. Nature. 290, 457–465.

    Article  PubMed  CAS  Google Scholar 

  13. Clayton D.A. 1982. Replication of animal mitochondrial DNA. Cell. 28, 693–705.

    Article  PubMed  CAS  Google Scholar 

  14. Richter C., Park J.W., Ames B.N. 1988. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. USA. 85, 6465–6467.

    Article  PubMed  CAS  Google Scholar 

  15. Legros F., Malka F., Frachon P., Lombes A., Rojo M. 2004. Organization and dynamics of human mitochondrial DNA. J. Cell. Sci. 117, 2653–2662.

    Article  PubMed  CAS  Google Scholar 

  16. Iborra F.J., Kimura H., Cook P.R. 2004. The functional organization of mitochondrial genomes in human cells. BMC Biol. 2, 9.

    Article  PubMed  Google Scholar 

  17. Garrido N., Gripanc L., Jokitalo E., Wartiovaara J., van der Bliek A.M., Spelbrink J.N. 2003. Composition and dynamics of human mitochondrial nucleoids. Mol. Biol. Cell. 14, 1583–1596.

    Article  PubMed  CAS  Google Scholar 

  18. Woldringh C.L. 2002. The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation. Mol. Microbiol. 45, 17–29.

    Article  PubMed  CAS  Google Scholar 

  19. Battersby B.J., Loredo-Osti J.C., Shoubridge E.A. 2003. Nuclear genetic control of mitochondrial DNA segregation. Nature Genet. 33, 183–186.

    Article  PubMed  CAS  Google Scholar 

  20. Fisher R.P., Clayton D.A. 1988. Purification and characterization of human mitochondrial transcription factor 1. Mol. Cell. Biol. 8, 3496–3509.

    PubMed  CAS  Google Scholar 

  21. Attardi G., Schatz G. 1988. Biogenesis of mitochondria. Annu. Rev. Cell. Biol. 4, 289–333.

    Article  PubMed  CAS  Google Scholar 

  22. Shadel G.S., Clayton D.A. 1997. Mitochondrial DNA maintenance in vertebrates. Annu. Rev. Biochem. 66, 409–435.

    Article  PubMed  CAS  Google Scholar 

  23. Boore J.L. 1999. Animal mitochondrial genomes. Nucleic Acids Res. 27, 1767–1780.

    Article  PubMed  CAS  Google Scholar 

  24. Mokranjac D., Neupert W. 2005. Protein import into mitochondria. Biochem. Soc. Trans. 33, 1019–1023.

    Article  PubMed  CAS  Google Scholar 

  25. Andersson S.G., Karlberg O., Canback Ç., Kurland C.G. 2003. On the origin of mitochondria: A genomics perspective. Philos. Trans. R. Soc. bond. B Biol. Sci. 358, 165–177; discussion 177–169.

    Article  CAS  Google Scholar 

  26. von Heijne G. 1986. Why mitochondria need a genome. FEBS Lett. 198, 1–4.

    Article  Google Scholar 

  27. Popot J.L., de Vitry ë 1990. On the microassembly of integral membrane proteins. Annu. Rev. Biochim. Biophys. Chem. 9, 369–403.

    Article  Google Scholar 

  28. Claros M.G., Perea J., Shu Y., Samatey F.A., Popot J.L., Jacq C. 1995. Limitations to in vivo import of hydrophobic proteins into yeast mitochondria: The case of a cytoplasmically synthesized apocytochrome b. Eur. J. Biochem. 228, 762–771.

    Article  PubMed  CAS  Google Scholar 

  29. Allen J.F. 1993. Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes. J. Theor. Biol. 165, 609–631.

    Article  PubMed  CAS  Google Scholar 

  30. Allen J.F. 1993. Redox control of transcription: sensors, response regulators, activators and repressors. FEBS Lett. 332, 203–207.

    Article  PubMed  CAS  Google Scholar 

  31. Baginsky S., Tiller K., Pfannschmidt í., Link G. 1999. PTK, the chloroplast RNA polymerase-associated protein kinase from mustard (Sinapis alba), mediates redox control of plastid in vitro transcription. Plant. Mol. Biol. 39, 1013–1023.

    Article  PubMed  CAS  Google Scholar 

  32. Montoya J., Ojala D., Attardi G. 1981. Distinctive features of the 5’-terminal sequences of the human mitochondrial mRNAs. Nature. 290, 465–470.

    Article  PubMed  CAS  Google Scholar 

  33. Ojala D., Montoya J., Attardi G. 1981. tRNA punctuation model of RNA processing in human mitochondria. Nature. 290, 470–474.

    Article  PubMed  CAS  Google Scholar 

  34. Montoya J., Christianson í., Levens D., Rabinowitz M., Attardi G. 1982. Identification of initiation sites for heavy-strand and light-strand transcription in human mitochondrial DNA. Proc. Natl. Acad. Sci. USA. 79, 7195–7199.

    Article  PubMed  CAS  Google Scholar 

  35. Bogenhagen D.F., Applegate E.F., Yoza B.K. 1984. Identification of a promoter for transcription of the heavy strand of human mtDNA: in vitro transcription and deletion mutagenesis. Cell. 36, 1105–1113.

    Article  PubMed  CAS  Google Scholar 

  36. Montoya J., Gaines G.L., Attardi G. 1983. The pattern of transcription of the human mitochondrial rRNA genes reveals two overlapping transcription units. Cell. 34, 151–159.

    Article  PubMed  CAS  Google Scholar 

  37. Christianson T.W., Clayton D.A. 1988. A tridecamer DNA sequence supports human mitochondrial RNA 3’-end formation in vitro. Mol. Cell. Biol. 8, 4502–4509.

    PubMed  CAS  Google Scholar 

  38. Kruse B., Narasimhan N., Attardi G. 1989. Termination of transcription in human mitochondria: Identification and purification of a DNA binding protein factor that promotes termination. Cell. 58, 391–397.

    Article  PubMed  CAS  Google Scholar 

  39. Gaines G., Attardi G. 1984. Highly efficient RNA-synthesizing system that uses isolated human, mitochondria: New initiation events and in vivo-like processing patterns. Mol. Cell. Biol. 4, 1605–1617.

    PubMed  CAS  Google Scholar 

  40. Gaines G., Rossi C., Attardi G. 1987. Markedly different ATP requirements for rRNA synthesis and mtDNA light strand transcription versus mRNA synthesis in isolated human mitochondria. J. Biol. Chem. 262, 1907–1915.

    PubMed  CAS  Google Scholar 

  41. Micol V., Fernandez-Silva P., Attardi G. 1997. Functional analysis of in vivo and in organelle footprinting of HeLa cell mitochondrial DNA in relationship to ATP and ethidium bromide effects on transcription. J. Biol Chem. 272, 18896–18904.

    Article  PubMed  CAS  Google Scholar 

  42. Clayton D.A. 1992. Transcription and replication of animal mitochondrial DNAs. Int. Rev. Cytol. 141, 217–232.

    Article  PubMed  CAS  Google Scholar 

  43. Chang D.D., Clayton D.A. 1986. Precise assignment of the light-strand promoter of mouse mitochondrial DNA: A functional promoter consists of multiple upstream domains. Mol. Cell. Biol. 6, 3253–3261.

    PubMed  CAS  Google Scholar 

  44. Fisher R.P., Topper J.N., Clayton D.A. 1987. Promoter selection in human mitochondria involves binding of a transcription factor to orientation-independent upstream regulatory elements. Cell. 50, 247–258.

    Article  PubMed  CAS  Google Scholar 

  45. Dubin D.T., Montoya J., Timko K.D., Attardi G. 1982. Sequence analysis and precise mapping of the 3′ ends of HeLa cell mitochondrial ribosomal RNAs. J. Mol. Biol. 157, 1–19.

    Article  PubMed  CAS  Google Scholar 

  46. Arcari P., Brownlee G.G. 1980. The nucleotide sequence of a small (3S) seryl-tRNA (anticodon GCU) from beef heart mitochondria. Nucleic Acids Res. 8, 5207–5212.

    Article  PubMed  CAS  Google Scholar 

  47. de Bruijn M.H., Schreier P.H., Eperon I.C., Barrell B.G., Chen E.Y., Armstrong P.W., Wong J.F., Roe B.A. 1980. A mammalian mitochondrial serine transfer RNA lacking the “dihydrouridine” loop and stem. Nucleic Acids Res. 8, 5213–5222.

    Article  PubMed  Google Scholar 

  48. Clayton D.A. 1991. Replication and transcription of vertebrate mitochondrial DNA. Annu. Rev. Cell. Biol. 7, 453–478.

    Article  PubMed  CAS  Google Scholar 

  49. Ojala D., Attardi G. 1980. Fine mapping of the ribosomal RNA genes of HeLa cell mitochondrial DNA. J. Mol. Biol. 138, 411–420.

    Article  PubMed  CAS  Google Scholar 

  50. Doersen C.J., Guerrier-Takada C., Altaian S., Attardi G. 1985. Characterization of an RNase P activity from HeLa cell mitochondria: Comparison with the cytosol RNase P activity. J. Biol. Chem. 260, 5942–5949.

    PubMed  CAS  Google Scholar 

  51. Rossmanith W., Tullo A., Potuschak T., Karwan R., Sbisa E. 1995. Human mitochondrial tRNA processing. J. Biol. Chem. 270, 12885–12891.

    Article  PubMed  CAS  Google Scholar 

  52. Helm M., Brule H., Friede D., Giege R., Putz D., Florentz C. 2000. Search for characteristic structural features of mammalian mitochondrial tRNAs. RNA. 6, 1356–1379.

    Article  PubMed  CAS  Google Scholar 

  53. Nagaike T., Suzuki T., Tomari Y., Takemoto-Hori C., Negayama F., Watanabe K., Ueda T. 2001. Identification and characterization of mammalian mitochondrial tRNA nucleotidyltransferases. J. Biol. Chem. 276, 40041–40049.

    Article  PubMed  CAS  Google Scholar 

  54. Greenleaf A.L., Kelly J.L., Lehman I.R. 1986. Yeast RP041 gene product is required for transcription and maintenance of the mitochondrial genome. Proc. Natl. Acad. Sci. USA. 83, 3391–3394.

    Article  PubMed  CAS  Google Scholar 

  55. Kelly J.L., Lehman I.R. 1986. Yeast mitochondrial RNA polymerase. Purification and properties of the catalytic subunit. J. Biol. Chem. 261, 10340–10347.

    PubMed  CAS  Google Scholar 

  56. Shutt T.E., Gray M.W. 2006. Bacteriophage origins of mitochondrial replication and transcription proteins. Trends Genet. 22, 90–95.

    Article  PubMed  CAS  Google Scholar 

  57. Tiranti V., Savoia A., Forti F., D’Apolito M.F., Centra M., Rocchi M., Zeviani M. 1997. Identification of the gene encoding the human mitochondrial RNA polymerase (h-mtRPOL) by cyberscreening of the Expressed Sequence Tags database. Hum. Mol. Genet. 6, 615–625.

    Article  PubMed  CAS  Google Scholar 

  58. Masters B.S., Stohl L.L., Clayton D.A. 1987. Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7. Cell. 51, 89–99.

    Article  PubMed  CAS  Google Scholar 

  59. Wang Y., Shadel G.S. 1999. Stability of the mitochondrial genome requires an amino-terminal domain of yeast mitochondrial RNA polymerase. Proc. Natl. Acad. Sci. USA. 96, 8046–8051.

    Article  PubMed  CAS  Google Scholar 

  60. Rodeheffer M.S., Boone B.E., Bryan A.C., Shadel G.S. 2001. Namlp, a protein involved in RNA processing and translation, is coupled to transcription through an interaction with yeast mitochondrial RNA polymerase. J. Biol. Chem. 276, 8616–8622.

    Article  PubMed  CAS  Google Scholar 

  61. Chase C.D. 2007. Cytoplasmic male sterility: A window to the world of plant mitochondrial-nuclear interactions. Trends Genet. 23, 81–90.

    Article  PubMed  CAS  Google Scholar 

  62. Falkenberg M., Gaspari M., Rantanen A., Trifunovic A., Larsson N.G., Gustafsson C.M. 2002. Mitochondrial transcription factors Bl and B2 activate transcription of human mtDNA. Nature Genet. 31, 289–294.

    Article  PubMed  CAS  Google Scholar 

  63. McCulloch V., Seidel-Rogol B.L., Shadel G.S. 2002. A human mitochondrial transcription factor is related to RNA adenine methyltransferases and binds S-adenosylmethionine. Mol. Cell. Biol. 22, 1116–1125.

    Article  PubMed  CAS  Google Scholar 

  64. Kravchenko J.E., Rogozin L.B., Koonin E.V., Chumakov P.M. 2005. Transcription of mammalian messenger RNAs by a nuclear RNA polymerase of mitochondrial origin. Nature. 436, 735–739.

    Article  PubMed  CAS  Google Scholar 

  65. Parisi M.A., Clayton D.A. 1991. Similarity of human mitochondrial transcription factor 1 to high mobility group proteins. Science. 252, 965–969.

    Article  PubMed  CAS  Google Scholar 

  66. Thomas J.O., Travers A.A. 2001. HMG1 and 2, and related ‘architectural’ DNA-binding proteins. Trends Biochem. Sci. 26, 167–174.

    Article  PubMed  CAS  Google Scholar 

  67. Kaufman B.A., Durisic N., Mativetsky J.M., Costantino S., Hancock M.A., Grutter P., Shoubridge E.A. 2007. The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoidlike structures. Mol. Biol. Cell. 18, 3225–3236.

    Article  PubMed  CAS  Google Scholar 

  68. Alam T.I., Kanki T., Muta T., Ukaji K., Abe Y., Nakayama H., Takio K., Hamasaki N., Kang D. 2003. Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res. 31, 1640–1645.

    Article  PubMed  CAS  Google Scholar 

  69. Wiesner R.J., Zsurka G., Kunz W.S. 2006. Mitochondrial DNA damage and the aging process: Facts and imaginations. Free Radic. Res. 40, 1284–1294.

    Article  PubMed  CAS  Google Scholar 

  70. Cotney J., Wang Z., Shadel G.S. 2007. Relative abundance of the human mitochondrial transcription system and distinct roles for h-mtTFBl and h-mtTFB2 in mitochondrial biogenesis and gene expression. Nucleic Acids Res. 35, 4042–4054.

    Article  PubMed  CAS  Google Scholar 

  71. Dairaghi D.J., Shadel G.S., Clayton D.A. 1995. Addition of a 29 residue carboxyl-terminal tail converts a simple HMG box-containing protein into a transcriptional activator. J. Mol. Biol. 249, 11–28.

    Article  PubMed  CAS  Google Scholar 

  72. Antoshechkin I., Bogenhagen D.F., Mastrangelo L.A. 1997. The HMG-box mitochondrial transcription factor xl-mtTFA binds DNA as a tetramer to activate bidirectional transcription. EMBO J. 16, 3198–3206.

    Article  PubMed  CAS  Google Scholar 

  73. Xu B., Clayton D.A. 1992. Assignment of a yeast protein necessary for mitochondrial transcription initiation. Nucleic Acids Res. 20, 1053–1059.

    Article  PubMed  CAS  Google Scholar 

  74. Dairaghi D.J., Shadel G.S., Clayton D.A. 1995. Human mitochondrial transcription factor A and promoter spacing integrity are required for transcription initiation. Biochim. Biophys. Acta. 1271, 127–134.

    PubMed  Google Scholar 

  75. McCulloch V., Shadel G.S. 2003. Human mitochondrial transcription factor Bl interacts with the C-terminal activation region of h-mtTFA and stimulates transcription independently of its RNA methyltransferase activity. Mol. Cell. Biol. 23, 5816–5824.

    Article  PubMed  CAS  Google Scholar 

  76. Cliften P.F., Park J.Y., Davis B.P., Jang S.H., Jaehning J.A. 1997. Identification of three regions essential for interaction between a sigma-like factor and core RNA polymerase. Genes Dev. 11, 2897–2909.

    Article  PubMed  CAS  Google Scholar 

  77. Cotney J., Shadel G.S. 2006. Evidence for an early gene duplication event in the evolution of the mitochondrial transcription factor Ç family and maintenance of rRNA methyltransferase activity in human mtTFB 1 and mtTFB2. J. Mol. Evol. 63, 707–717.

    Article  PubMed  CAS  Google Scholar 

  78. Shutt T.E., Gray M.W. 2006. Homologs of mitochondrial transcription factor B, sparsely distributed within the eukaryotic radiation, are likely derived from the dimethyladenosine methyltransferase of the mitochondrial endosymbiont. Mol. Biol. Evol. 23, 1169–1179.

    Article  PubMed  CAS  Google Scholar 

  79. Seidel-Rogol B.L., McCulloch V., Shadel G.S. 2003. Human mitochondrial transcription factor Bl methylates ribosomal RNA at a conserved stem-loop. Nature Genet. 33, 23–24.

    Article  PubMed  CAS  Google Scholar 

  80. Matsushima Y., Garesse R., Kaguni L.S. 2004. Drosophila mitochondrial transcription factor B2 regulates mitochondrial DNA copy number and transcription in Schneider cells. J. Biol. Chem. 279, 26900–26905.

    Article  PubMed  CAS  Google Scholar 

  81. Matsushima Y., Adan C, Garesse R., Kaguni L.S. 2005. Drosophila mitochondrial transcription factor Bl modulates mitochondrial translation but not transcription or DNA copy number in Schneider cells. J. Biol. Chem. 280, 16815–16820.

    Article  PubMed  CAS  Google Scholar 

  82. Wang Z., Cotney J., Shadel G.S. 2007. Human mitochondrial ribosomal protein MRPL12 interacts directly with mitochondrial RNA polymerase to modulate mitochondrial gene expression. J. Biol. Chem. 282, 12610–12618.

    Article  PubMed  CAS  Google Scholar 

  83. O’Brien T.W. 2003. Properties of human mitochondrial ribosomes. IUBMB Life. 55, 505–513.

    Article  PubMed  CAS  Google Scholar 

  84. Ramagopal S. 1976. Accumulation of free ribosomal proteins SI, L7, and L12 in Escherichia coli. Eur. J. Biochem. 69, 289–297.

    Article  PubMed  CAS  Google Scholar 

  85. Cheetham G.M., Steitz T.A. 2000. Insights into transcription: Structure and function of single-subunit DNA-dependent RNA polymerases. Curr. Opin. Struct. Biol. 10, 117–123.

    Article  PubMed  CAS  Google Scholar 

  86. Schubot F.D., Chen C.J., Rose J.P., Dailey T.A., Dailey H.A., Wang B.C. 2001. Crystal structure of the transcription factor sc-mtTFB offers insights into mitochondrial transcription. Protein Sci. 10, 1980–1988.

    Article  PubMed  CAS  Google Scholar 

  87. Gaspari M., Falkenberg M., Larsson N.G., Gustafsson C.M. 2004. The mitochondrial RNA polymerase contributes critically to promoter specificity in mammalian cells. EMBO J. 23, 4606–4614.

    Article  PubMed  CAS  Google Scholar 

  88. Fisher R.P., Parisi M.A., Clayton D.A. 1989. Flexible recognition of rapidly evolving promoter sequences by mitochondrial transcription factor 1. Genes Dev. 3, 2202–2217.

    Article  PubMed  CAS  Google Scholar 

  89. Matsunaga M., Jaehning J.A. 2004. Intrinsic promoter recognition by a “core” RNA polymerase. J. Biol. Chem. 279, 44239–44242.

    Article  PubMed  CAS  Google Scholar 

  90. Bonawitz N.D., Clayton D.A., Shadel G.S. 2006. Initiation and beyond: Multiple functions of the human mitochondrial transcription machinery. Mol. Cell. 24, 813–825.

    Article  PubMed  CAS  Google Scholar 

  91. Asin-Cayuela J., Gustafsson CM. 2007. Mitochondrial transcription and its regulation in mammalian cells. Trends Biochem. Sci. 32, 111–117.

    Article  PubMed  CAS  Google Scholar 

  92. Kelly D.P., Scarpulla R.C. 2004. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 18, 357–368.

    Article  PubMed  CAS  Google Scholar 

  93. Larsson N.G., Garman J.D., Oldfors A., Barsh G.S., Clayton D.A. 1996. A single mouse gene encodes the mitochondrial transcription factor A and a testis-specific nuclear HMG-box protein. Nature Genet. 13, 296–302.

    Article  PubMed  CAS  Google Scholar 

  94. Larsson N.G., Barsh G.S., Clayton D.A. 1997. Structure and chromosomal localization of the mouse mitochondrial transcription factor A gene (Tfam). Mamm. Genome. 8, 139–140.

    Article  PubMed  CAS  Google Scholar 

  95. Rantanen A., Gaspari M., Falkenberg M., Gustafsson C.M., Larsson N.G. 2003. Characterization of the mouse genes for mitochondrial transcription factors Bl and B2. Mamm. Genome. 14, 1–6.

    Article  PubMed  CAS  Google Scholar 

  96. Gleyzer N., Vercauteren K., Scarpulla R.C. 2005. Control of mitochondrial transcription specificity factors (TFBIM and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol. Cell. Biol. 25, 1354–1366.

    Article  PubMed  CAS  Google Scholar 

  97. Fernandez-Silva P., Enriquez J.A., Montoya J. 2003. Replication and transcription of mammalian mitochondrial DNA. Exp: Physiol. 88, 41–56.

    Article  CAS  Google Scholar 

  98. Shuey D.J., Attardi G. 1985. Characterization of an RNA polymerase activity from HeLa cell mitochondria, which initiates transcription at the heavy strand rRNA promoter and the light strand promoter in human mitochondrial DNA. J. Biol. Chem. 260, 1952–1958.

    PubMed  CAS  Google Scholar 

  99. Narasimhan N., Attardi G. 1987. Specific requirement for ATP at an early step of in vitro transcription of human mitochondrial DNA. Proc. Natl. Acad. Sci. USA. 84, 4078–4082.

    Article  PubMed  CAS  Google Scholar 

  100. Amiott E.A., Jaehning J.A. 2006. Mitochondrial transcription is regulated via an ATP “sensing” mechanism that couples RNA abundance to respiration. Mol. Cell. 22, 329–338.

    Article  PubMed  CAS  Google Scholar 

  101. Fernandez-Silva P., Martinez-Azorin F., Micol V., Attardi G. 1997. The human mitochondrial transcription termination factor (mTERF) is a multizipper protein but binds to DNA as a monomer, with evidence pointing to intramolecular leucine zipper interactions. EMBO J. 16, 1066–1079.

    Article  PubMed  CAS  Google Scholar 

  102. Chomyn A., Martinuzzi A., Yoneda M., Daga A., Hurko O., Johns D., Lai S.T., Nonaka I., Angelini C, Attardi G. 1992. MELAS mutation in mtDNA binding site for transcription termination factor causes defects in protein synthesis and in respiration but no change in levels of upstream and downstream mature transcripts. Proc. Natl. Acad. Sci. USA. 89, 4221–4225.

    Article  PubMed  CAS  Google Scholar 

  103. Asin-Cayuela J., Schwend T., Farge G., Gustafsson C.M. 2005. The human mitochondrial transcription termination factor (mTERF) is fully active in vitro in the nonphosphorylated form. J. Biol. Chem. 280, 25499–25505.

    Article  PubMed  CAS  Google Scholar 

  104. Shang J., Clayton D.A. 1994. Human mitochondrial transcription termination exhibits RNA polymerase independence and biased bipolarity in vitro. J. Biol. Chem. 269, 29112–29120.

    PubMed  CAS  Google Scholar 

  105. Prieto-Martin A., Montoya J., Martinez-Azorin F. 2004. Phosphorylation of rat mitochondrial transcription termination factor (mTERF) is required for transcription termination but not for binding to DNA. Nucleic Acids Res. 32, 2059–2068.

    Article  PubMed  CAS  Google Scholar 

  106. Martin M., Cho J., Cesare A.J., Griffith J.D., Attardi G. 2005. Termination factor-mediated DNA loop between termination and initiation sites drives mitochondrial rRNA synthesis. Cell. 123, 1227–1240.

    Article  PubMed  CAS  Google Scholar 

  107. Linder T., Park C.B., Asin-Cayuela J., Pellegrini M., Larsson N.G., Falkenberg M., Samuelsson T., Gustafsson C.M. 2005. A family of putative transcription termination factors shared amongst metazoans and plants. Curr. Genet. 48, 265–269.

    Article  PubMed  CAS  Google Scholar 

  108. Camasamudram V., Fang J.K., Avadhani N.G. 2003. Transcription termination at the mouse mitochondrial H-strand promoter distal site requires an A/T rich sequence motif and sequence specific DNA binding proteins. Eur. J. Biochem. 270, 1128–1140.

    Article  PubMed  CAS  Google Scholar 

  109. Chen Y., Zhou G., Yu M., He Y., Tang W., Lai J., He J., Liu W., Tan D. 2005. Cloning and functional analysis of human mTERFL encoding a novel mitochondrial transcription termination factor-like protein. Biochem. Biophys. Res. Commun. 337, 1112–1118.

    Article  PubMed  CAS  Google Scholar 

  110. Roberti M., Bruni F., Loguercio Polosa P., Manzari C., Gadaleta M.N., Cantatore P. 2006. MTERF3, the most conserved member of the mTERF-family, is a modular factor involved in mitochondrial protein synthesis. Biochim. Biophys. Acta. 1757, 1199–1206.

    Article  PubMed  CAS  Google Scholar 

  111. Park C.B., Asin-Cayuela J., Camara Y., Shi Y., Pellegrini M., Gaspari M., Wibom R., Hultenby K., Erdjument-Bromage H., Tempst P., Falkenberg M., Gustafsson C.M., Larsson N.G. 2007. MTERF3 is a negative regulator of mammalian mtDNA transcription. Cell. 130, 273–285.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Kochetkov.

Additional information

Original Russian Text © M.Yu. Sologub, S.N. Kochetkov, D.E. Temiakov, 2009, published in Molekulyarnaya Biologiya, 2009, Vol. 43, No. 2, pp. 215–229.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sologub, M.Y., Kochetkov, S.N. & Temiakov, D.E. Transcription and its regulation in mammalian and human mitochondria. Mol Biol 43, 198–210 (2009). https://doi.org/10.1134/S0026893309020034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893309020034

Key words

Navigation