Skip to main content
Log in

Mechanisms of distant enhancer action on DNA and in chromatin

  • To the Anniversary of the Institute of Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Enhancers and insulators are regulatory DNA sequences that can work over a large distance. Efficient action over a distance clearly requires special mechanisms for facilitating communication between a regulatory region and its target. Studies from our laboratory identified DNA supercoiling as primary factor that mediates efficient enhancer-promoter communication over a distance in prokaryotes through a “DNA slithering” mechanism. These studies allowed rational design and construction of an insulator that can block enhancer action over a distance both in vitro and in vivo. Our most recent studies suggest that eukaryotic chromatin structure can support action over a distance using similar principles, but in a mechanistically distinct way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bondarenko V.A., Liu Y.V., Jiang Y.I., Studitsky V.M. 2003. Communication over a large distance: enhancers and insulators. Biochem. Cell. Biol. 81, 241–251.

    Article  PubMed  CAS  Google Scholar 

  2. de Laat W., Klous P., Kooren J., Noordermeer D., Palstra R.J., Simonis M., Splinter E., Grosveld F. 2008. Three-dimensional organization of gene expression in erythroid cells. Curr. Top. Dev. Biol. 82, 117–139.

    Article  PubMed  Google Scholar 

  3. Wallace J.A., Felsenfeld G. 2007. We gather together: Insulators and genome organization. Curr. Opin. Genet. Dev. 17, 400–407.

    Article  PubMed  CAS  Google Scholar 

  4. Maksimenko O., Golovnin A., Georgiev P. 2008. Enhancer-promoter communication is regulated by insulator pairing in a Drosophila model bigenic locus. Mol. Cell. Biol. 28, 5469–5477.

    Article  PubMed  CAS  Google Scholar 

  5. Bellomy G.R., Record M.T., Jr. 1990. Stable DNA loops in vivo and in vitro: roles in gene regulation at a distance and in biophysical characterization of DNA. Progr. Nucleic Acid Res. Mol. Biol. 39, 81–128.

    Article  CAS  Google Scholar 

  6. Liu Y., Bondarenko V., Ninfa A., Studitsky V.M. 2001. DNA supercoiling allows enhancer action over a large distance. Proc. Natl. Acad. Sci. USA. 98, 14883–14888.

    Article  PubMed  CAS  Google Scholar 

  7. Guarente L. 1988. UASs and enhancers: common mechanism of transcriptional activation in yeast and mammals. Cell. 52, 303–305.

    Article  PubMed  CAS  Google Scholar 

  8. Studitsky V.M. 1991. Allosteric mechanism of enhancer action? FEBS Lett. 280, 5–7.

    Article  PubMed  CAS  Google Scholar 

  9. Studitsky V.M., Khrapko K.R. 1990. Enhancers, DNA loops and stable complexes: A mechanism of transcription activation. Mol. Biol. 24, 909–919.

    Google Scholar 

  10. Gralla J.D. 1996. Activation and repression of E. coli promoters. Curr. Opin. Genet. Dev. 6, 526–530.

    Article  PubMed  CAS  Google Scholar 

  11. Buck M., Gallegos M.T., Studholme D.J., Guo Y., Gralla J.D. 2000. The bacterial enhancer-dependent sigma(54) (sigma(N)) transcription factor. J. Bacteriol. 182, 4129–4136.

    Article  PubMed  CAS  Google Scholar 

  12. Magasanik B. 1989. Regulation of transcription of the glnALG operon of Escherichia coli by protein phosphorylation. Biochimie. 71, 1005–1012.

    Article  PubMed  CAS  Google Scholar 

  13. Hwang I., Thorgeirsson T., Lee J., Kustu S., Shin Y.K. 1999. Physical evidence for a phosphorylation-dependent conformational change in the enhancer-binding protein NtrC. Proc. Natl. Acad. Sci. USA. 96, 4880–4885.

    Article  PubMed  CAS  Google Scholar 

  14. Wyman C., Rombel I., North A.K., Bustamante C., Kustu S. 1997. Unusual oligomerization required for activity of NtrC, a bacterial enhancer-binding protein. Science. 275, 1658–1661.

    Article  PubMed  CAS  Google Scholar 

  15. Porter S.C., North A.K., Wedel A.B., Kustu S. 1993. Oligomerization of NTRC at the glnA enhancer is required for transcriptional activation. Genes Dev. 7, 2258–2273.

    Article  PubMed  CAS  Google Scholar 

  16. Wedel A., Kustu S. 1995. The bacterial enhancer-binding protein NTRC is a molecular machine: ATP hydrolysis is coupled to transcriptional activation. Genes Dev. 9, 2042–2052.

    Article  PubMed  CAS  Google Scholar 

  17. Su W., Porter S., Kustu S., Echols H. 1990. DNA-looping and enhancer activity: Association between DNA-bound NtrC activator and RNA polymerase at the bacterial glnA promoter. Proc. Natl. Acad. Sci. USA. 87, 5504–5508.

    Article  PubMed  CAS  Google Scholar 

  18. Rippe K., Guthold M., von Hippel P.H., Bustamante C. 1997. Transcriptional activation via DNA-looping: Visualization of intermediates in the activation pathway of E. coli RNA polymerase x sigma 54 holoenzyme by scanning force microscopy. J. Mol. Biol. 270, 125–138.

    Article  PubMed  CAS  Google Scholar 

  19. Sasse-Dwight S., Gralla J.D. 1988. Probing the Escherichia coli glnALG upstream activation mechanism in vivo. Proc. Natl. Acad. Sci. USA. 85, 8934–8938.

    Article  PubMed  CAS  Google Scholar 

  20. Popham D.L., Szeto D., Keener J., Kustu S. 1989. Function of a bacterial activator protein that binds to transcriptional enhancers. Science. 243, 629–635.

    Article  PubMed  CAS  Google Scholar 

  21. Bondarenko V., Liu Y., Ninfa A., Studitsky V.M. 2002. Action of prokaryotic enhancer over a distance does not require continued presence of promoter-bound sigma54 subunit. Nucleic Acids Res. 30, 636–642.

    Article  PubMed  CAS  Google Scholar 

  22. Rubtsov M.A., Polikanov Y.S., Bondarenko V.A., Wang Y.H., Studitsky V.M. 2006. Chromatin structure can strongly facilitate enhancer action over a distance. Proc. Natl. Acad. Sci. USA. 103, 17690–17695.

    Article  PubMed  CAS  Google Scholar 

  23. Tolhuis B., Palstra R.J., Splinter E., Grosveld F., de Laat W. 2002. Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol. Cell. 10, 1453–1465.

    Article  PubMed  CAS  Google Scholar 

  24. Carter D., Chakalova L., Osborne C.S., Dai Y.F., Fraser P. 2002. Long-range chromatin regulatory interactions in vivo. Nature Genet. 32, 623–626.

    Article  PubMed  CAS  Google Scholar 

  25. Ferrai C., Munari D., Luraghi P., Pecciarini L., Cangi M.G., Doglioni C., Blasi F., Crippa M.P. 2007. A transcription-dependent micrococcal nuclease-resistant fragment of the urokinase-type plasminogen activator promoter interacts with the enhancer. J. Biol. Chem. 282, 12537–12546.

    Article  PubMed  CAS  Google Scholar 

  26. Vernimmen D., De Gobbi M., Sloane-Stanley J.A., Wood W.G., Higgs D.R. 2007. Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression. EMBO J. 26, 2041–2051.

    Article  PubMed  CAS  Google Scholar 

  27. Jhunjhunwala S., van Zelm M.C., Peak M.M., Cutchin S., Riblet R., van Dongen J.J., Grosveld F. G., Knoch T.A., Murre C. 2008. The 3D structure of the immunoglobulin heavy-chain locus: implications for long-range genomic interactions. Cell. 133, 265–279.

    Article  PubMed  CAS  Google Scholar 

  28. Ho Y., Elefant F., Liebhaber S.A., Cooke N.E. 2006. Locus control region transcription plays an active role in long-range gene activation. Mol. Cell. 23, 365–375.

    Article  PubMed  CAS  Google Scholar 

  29. Zhu X., Ling J., Zhang L., Pi W., Wu M., Tuan D. 2007. A facilitated tracking and transcription mechanism of long-range enhancer function. Nucleic Acids Res. 35, 5532–5544.

    Article  PubMed  CAS  Google Scholar 

  30. Ling J., Ainol L., Zhang L., Yu X., Pi W., Tuan D. 2004. HS2 enhancer function is blocked by a transcriptional terminator inserted between the enhancer and the promoter. J. Biol. Chem. 279, 51704–51713.

    Article  PubMed  CAS  Google Scholar 

  31. Zhao H., Kim A., Song S.H., Dean A. 2006. Enhancer blocking by chicken beta-globin 5′-HS4: Role of enhancer strength and insulator nucleosome depletion. J. Biol. Chem. 281, 30573–30580.

    Article  PubMed  CAS  Google Scholar 

  32. Hatzis P., Talianidis I. 2002. Dynamics of enhancer-promoter communication during differentiation-Induced gene activation. Mol. Cell. 10, 1467–1477.

    Article  PubMed  CAS  Google Scholar 

  33. Byrd K., Corces V.G. 2003. Visualization of chromatin domains created by the gypsy insulator of Drosophila. J. Cell. Biol. 162, 565–574.

    Article  PubMed  CAS  Google Scholar 

  34. Yusufzai T.M., Tagami H., Nakatani Y., Felsenfeld G. 2004. CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol. Cell. 13, 291–298.

    Article  PubMed  CAS  Google Scholar 

  35. Ameres S.L., Drueppel L., Pfleiderer K., Schmidt A., Hillen W., Berens C. 2005. Inducible DNA-loop formation blocks transcriptional activation by an SV40 enhancer. EMBO J. 24, 358–367.

    Article  PubMed  CAS  Google Scholar 

  36. Splinter E., Heath H., Kooren J., Palstra R.J., Klous P., Grosveld F., Galjart N., de Laat W. 2006. CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes Dev. 20, 2349–2354.

    Article  PubMed  CAS  Google Scholar 

  37. Cai H.N., Shen P. 2001. Effects of cis arrangement of chromatin insulators on enhancer-blocking activity. Science. 291, 493–495.

    Article  PubMed  CAS  Google Scholar 

  38. Muravyova E., Golovnin A., Gracheva E., Parshikov A., Belenkaya T., Pirrotta V., Georgiev P. 2001. Loss of insulator activity by paired Su(Hw) chromatin insulators. Science. 291, 495–498.

    Article  PubMed  CAS  Google Scholar 

  39. Maksimenko O., Golovnin A., Georgiev P. 2008. Enhancer-promoter communication is regulated by insulator pairing in a Drosophila model bigenic locus. Mol. Cell. Biol. (28, 5469–5477.

    Article  PubMed  CAS  Google Scholar 

  40. Claverie-Martin F., Magasanik B. 1992. Positive and negative effects of DNA bending on activation of transcription from a distant site. J. Mol. Biol. 227, 996–1008.

    Article  PubMed  CAS  Google Scholar 

  41. Vologodskii A., Cozzarelli N.R. 1996. Effect of super-coiling on the juxtaposition and relative orientation of DNA sites. Biophys. J. 70, 2548–2556.

    Article  PubMed  CAS  Google Scholar 

  42. Huang J., Schlick T., Vologodskii A. 2001. Dynamics of site juxtaposition in supercoiled DNA. Proc. Natl. Acad. Sci. USA. 98, 968–973.

    Article  PubMed  CAS  Google Scholar 

  43. Bondarenko V.A., Jiang Y.I., Studitsky V.M. 2003. Rationally designed insulator-like elements can block enhancer action in vitro. EMBO J. 22, 4728–4737.

    Article  PubMed  CAS  Google Scholar 

  44. Barkley M.D., Riggs A.D., Jobe A., Burgeois S. 1975. Interaction of effecting ligands with lac repressor and repressor-operator complex. Biochemistry. 14, 1700–1712.

    Article  PubMed  CAS  Google Scholar 

  45. O’Gorman R.B., Rosenberg J.M., Kallai O.B., Dickerson R.E., Itakura K., Riggs A.D., Matthews K.S. 1980. Equilibrium binding of inducer to lac repressor/operator DNA complex. J. Biol. Chem. 255, 10107–10114.

    PubMed  Google Scholar 

  46. Whitson P.A., Olson J.S., Matthews K.S. 1986. Thermodynamic analysis of the lactose repressor-operator DNA interaction. Biochemistry. 25, 3852–3858.

    Article  PubMed  CAS  Google Scholar 

  47. Whitson P.A., Hsieh W.T., Wells R.D., Matthews K.S. 1987. Influence of supercoiling and sequence context on operator DNA binding with lac repressor. J. Biol. Chem. 262, 14592–14599.

    PubMed  CAS  Google Scholar 

  48. Hsieh W.T., Whitson P.A., Matthews K.S., Wells R.D. 1987. Influence of sequence and distance between two operators on interaction with the lac repressor. J. Biol. Chem. 262, 14583–14591.

    PubMed  CAS  Google Scholar 

  49. Kramer H., Niemoller M., Amouyal M., Revet B., von Wilcken-Bergmann B., Muller-Hill B. 1987. lac repressor forms loops with linear DNA carrying two suitably spaced lac operators. EMBO J. 6, 1481–1491.

    PubMed  CAS  Google Scholar 

  50. Kramer H., Amouyal M., Nordheim A., Muller-Hill B. 1988. DNA supercoiling changes the spacing requirement of two lac operators for DNA loop formation with lac repressor. EMBO J. 7, 547–556.

    PubMed  CAS  Google Scholar 

  51. Chen J., Alberti S., Matthews K.S. 1994. Wild-type operator binding and altered cooperativity for inducer binding of lac repressor dimer mutant R3. lac. J. Biol. Chem. 269, 12482–12487.

    PubMed  CAS  Google Scholar 

  52. Polikanov Y.S., Bondarenko V.A., Tchernaenko V., Jiang Y.I., Lutter L.C., Vologodskii A., Studitsky V.M. 2007. Probability of the site juxtaposition determines the rate of protein-mediated DNA looping. Biophys. J. 93, 2726–2731.

    Article  PubMed  CAS  Google Scholar 

  53. Cai H., Levine M. 1995. Modulation of enhancer-promoter interactions by insulators in the Drosophila embryo. Nature. 376, 533–536.

    Article  PubMed  CAS  Google Scholar 

  54. Scott K.S., Geyer P.K. 1995. Effects of the su(Hw) insulator protein on the expression of the divergently transcribed Drosophila yolk protein genes. EMBO J. 14, 6258–6267.

    PubMed  CAS  Google Scholar 

  55. Dorsett D. 1993. Distance-independent inactivation of an enhancer by the suppressor of Hairy-wing DNA-binding protein of Drosophila. Genetics. 134, 1135–1144.

    PubMed  CAS  Google Scholar 

  56. Golovnin A., Gause M., Georgieva S., Gracheva E., Georgiev P. 1999. The su(Hw) insulator can disrupt enhancer-promoter interactions when located more than 20 kilobases away from the Drosophila achaete-scute complex. Mol. Cell. Biol. 19, 3443–3456.

    PubMed  CAS  Google Scholar 

  57. West A.G., Gaszner M., Felsenfeld G. 2002. Insulators: Many functions, many mechanisms. Genes Dev. 16, 271–288.

    Article  PubMed  Google Scholar 

  58. Fraser P., Bickmore W. 2007. Nuclear organization of the genome and the potential for gene regulation. Nature. 447, 413–417.

    Article  PubMed  CAS  Google Scholar 

  59. Morey C., Da Silva N.R., Kmita M., Duboule D., Bickmore W.A. 2008. Ectopic nuclear reorganisation driven by a Hoxb1 transgene transposed into Hoxd. J. Cell. Sci. 121, 571–577.

    Article  PubMed  CAS  Google Scholar 

  60. Horowitz-Scherer R.A., Woodcock C.L. 2006. Organization of interphase chromatin. Chromosoma. 115, 1–14.

    Article  PubMed  Google Scholar 

  61. Gilbert N., Boyle S., Fiegler H., Woodfine K., Carter N.P., Bickmore W.A. 2004. Chromatin architecture of the human genome: Gene-rich domains are enriched in open chromatin fibers. Cell. 118, 555–566.

    Article  PubMed  CAS  Google Scholar 

  62. Grigoryev S.A. 2004. Keeping fingers crossed: Heterochromatin spreading through interdigitation of nucleosome arrays. FEBS Lett. 564, 4–8.

    Article  PubMed  CAS  Google Scholar 

  63. Tremethick D.J. 2007. Higher-order structures of chromatin: The elusive 30 nm fiber. Cell. 128, 651–654.

    Article  PubMed  CAS  Google Scholar 

  64. Schwarz P.M., Hansen J.C. 1994. Formation and stability of higher order chromatin structures: Contributions of the histone octamer. J. Biol. Chem. 269, 16284–16289.

    PubMed  CAS  Google Scholar 

  65. Schalch T., Duda S., Sargent D.F., Richmond T.J. 2005. X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature. 436, 138–141.

    Article  PubMed  CAS  Google Scholar 

  66. Dorigo B., Schalch T., Kulangara A., Duda S., Schroeder R.R., Richmond T.J. 2004. Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science. 306, 1571–1573.

    Article  PubMed  CAS  Google Scholar 

  67. Robinson P.J., Fairall L., Huynh V.A., Rhodes D. 2006. EM measurements define the dimensions of the “30-nm” chromatin fiber: evidence for a compact, interdigitated structure. Proc. Natl. Acad. Sci. USA. 103, 6506–6511.

    Article  PubMed  CAS  Google Scholar 

  68. Bondarenko V., Liu Y.V., Ninfa A.J., Studitsky V.M. 2003. Assay of prokaryotic enhancer activity over a distance in vitro. Methods Enzymol. 370, 324–337.

    Article  PubMed  CAS  Google Scholar 

  69. Stein A., Dalal Y., Fleury T.J. 2002. Circle ligation of in vitro assembled chromatin indicates a highly flexible structure. Nucleic Acids Res. 30, 5103–5109.

    Article  PubMed  CAS  Google Scholar 

  70. Ringrose L., Chabanis S., Angrand P.O., Woodroofe C., Stewart A.F. 1999. Quantitative comparison of DNA looping in vitro and in vivo: Chromatin increases effective DNA flexibility at short distances. EMBO J. 18, 6630–6641, 6630–6641.

    Article  PubMed  CAS  Google Scholar 

  71. Gordon F., Luger K., Hansen J.C. 2005. The core histone N-terminal tail domains function independently and additively during salt-dependent oligomerization of nucleosomal arrays. J. Biol. Chem. 280, 33701–33706.

    Article  PubMed  CAS  Google Scholar 

  72. Polikanov Y.S., Rubtsov M.A., Studitsky V.M. 2007. Biochemical analysis of enhancer-promoter communication in chromatin. Methods. 41, 250–258.

    Article  PubMed  CAS  Google Scholar 

  73. Li G., Levitus M., Bustamante C., Widom J. 2005. Rapid spontaneous accessibility of nucleosomal DNA. Nature Struct. Mol. Biol. 12, 46–53.

    Article  CAS  Google Scholar 

  74. Anderson J.D., Thastrom A., Widom J. 2002. Spontaneous access of proteins to buried nucleosomal DNA target sites occurs via a mechanism that is distinct from nucleosome translocation. Mol. Cell. Biol. 22, 7147–7157.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Studitsky.

Additional information

Published in Russian in Molekulyarnaya Biologiya, 2009, Vol. 43, No. 2, pp. 204–214.

The article was translated by the author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Studitsky, V.M. Mechanisms of distant enhancer action on DNA and in chromatin. Mol Biol 43, 188–197 (2009). https://doi.org/10.1134/S0026893309020022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893309020022

Key words

Navigation