Molecular Biology

, Volume 42, Issue 6, pp 966–972 | Cite as

Utilization of protein splicing for purification of the human growth hormone

  • P. L. Starokadomskyy
  • O. V. Okunev
  • D. M. Irodov
  • V. A. Kordium
Applied Molecular Biology

Abstract

Developing simple and reliable methods to purify recombinant proteins is among the most important problems of modern biotechnology. It is of particular interest to take advantage of protein splicing for this purpose. Affinity tagging of inteins allows the use of regular protocols for protein purification. Autocatalytic excision of the tagged intein yields the pure protein lacking N-terminal formylmethionine. A new purification technique was developed on the basis of protein splicing for the human growth hormone. The Mxe GyrA intein with the histidine tag or cellulose-binding domain was used as a self-removable affinity unit. The resulting two-step purification protocol makes it possible to obtain the human growth hormone having the native N terminus with minimal losses.

Key words

recombinant proteins purification intein human growth hormone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Datta B. 2000. MAPs and POEP of the roads from prokaryotic to eukaryotic kingdoms. Biochimie. 82, 95–107.PubMedCrossRefGoogle Scholar
  2. 2.
    Wood D. 2003. Simplified protein purification using engineered self-cleaving affinity tags. J. Chem. Tech. Biotech. 78, 103–110.CrossRefGoogle Scholar
  3. 3.
    Chong S., Montello G., Zhang A., et al. 1998. Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step. Nucleic Acids Res. 26, 5109–5115.PubMedCrossRefGoogle Scholar
  4. 4.
    Kane P.M., Yamashiro C.T., Wolczyk D.F., et al. 1990. Protein splicing converts the yeast TFP1 gene product to the 69 kDa subunit of the vacuolar H+-adenosine triphosphatase. Science. 250, 651–657.PubMedCrossRefGoogle Scholar
  5. 5.
    Yu R., Hong A., Dai Y., Gao Y. 2004. Intein-mediated rapid purification of recombinant human pituitary adenilate cyclase activating polypeptide. Acta Biochim. Biophys. Sinica. 36, 759–766.CrossRefGoogle Scholar
  6. 6.
    Starokadomskyy P.L. 2005. Protein splicing. Ukr. Biokhim. Zh. 4, 14–29.Google Scholar
  7. 7.
    Noren C., Wang J., Perler F. 2000. Dissecting the chemistry of protein splicing and its applications. Angew. Chem. Int. Ed. 39, 450–466.CrossRefGoogle Scholar
  8. 8.
    Maniatis T., Fritsch E.F., Sambrook J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor; NY: Cold Spring Harbor Lab. Press.Google Scholar
  9. 9.
    Novagen pET System Manual. 11th ad. 2005. Darmstadt, Germany: EMD Biosciences.Google Scholar
  10. 10.
    Westermeier R. 1997. Electrophoresis in Practice. Weinheim: VCH.Google Scholar
  11. 11.
    Telenti A., Southworth M., Alcaide F., et al. 1997. The Mycobacterium xenopi GyrA protein splicing element: Characterization of a minimal intein. J. Bacteriol. 179, 6378–6382.PubMedGoogle Scholar
  12. 12.
    Perler F. 2002. InBase, the intein database. Nucleic Acids Res. 30, 383–384.PubMedCrossRefGoogle Scholar
  13. 13.
    Klabunde T., Sharma S., Telenti A., et al. 1998. Crystal structure of GyrA intein from Mycobacterium xenopi reveals structural basis of protein splicing. Nature Struct. Biol. 5, 31–36.PubMedCrossRefGoogle Scholar
  14. 14.
    Starokadomskyy P.L., Dubey I.Ya., Okunev O.V., Irodov D.M. 2007. Construction of a chimeric inteincontaining protein and the search for conditions for its cleavage. Cytol. Genet. 41, 69–75.CrossRefGoogle Scholar
  15. 15.
    Starokadomskyy P.L. 2007. Protein splicing. Mol. Biol. 41, 278–293.CrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • P. L. Starokadomskyy
    • 1
  • O. V. Okunev
    • 1
  • D. M. Irodov
    • 1
  • V. A. Kordium
    • 1
  1. 1.Institute of Molecular Biology and GeneticsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations